Понятие об обмене веществ и энергии: сущность процессов, виды, основные этапы

Обмен веществ. белковый, углеводный, липидный и водный

Что такое митохондрия?

Митохо́ндрия (от греч. μίτος — нить и χόνδρος — зёрнышко, крупинка) — двумембранный сферический или эллипсоидный органоид диаметром обычно около 1 микрометра.. Энергетическая станция клетки; основная функция — окисление органических соединений и использование освобождающейся при их распаде энергии для генерации электрического потенциала, синтеза АТФ и термогенеза.

Число митохондрий в клетке непостоянно. Их особенно много в клетках, в которых потребность в кислороде велика. В зависимости от того, в каких участках клетки в каждый конкретный момент происходит повышенное потребление энергии, митохондрии в клетке способны перемещаться по цитоплазме в зоны наибольшего энергопотребления.

Строение митохондрии

Митохондрия обладает двумя мембранами: наружной и внутренней. Главная функция наружной мембраны – это отделение органоида от цитоплазмы клетки. Она состоит из билипидного слоя и белков, пронизывающих его, через которые и осуществляется транспорт молекул и ионов, необходимых митохондрии для работы.

В то время как наружная мембрана гладкая, внутренняя образует многочисленные складки – кристы, которые существенно увеличивают ее площадь. Внутренняя мембрана по большей части состоит из белков, среди которых присутствуют ферменты дыхательной цепи, транспортные белки и крупные АТФ — синтетазные комплексы. Именно в этом месте происходит синтез АТФ. Между наружной и внутренней мембраной находится межмембранное пространство с присущими ему ферментами.Внутреннее пространство митохондрий называется матрикс. Здесь расположены ферментные системы окисления жирных кислот и пирувата, ферменты цикла Кребса, а также наследственный материал митохондрий – ДНК, РНК и белоксинтезирующий аппарат.

Митохондрия — это единственный источник энергии клеток. Расположенные в цитоплазме каждой клетки, митохондрии сравнимы с «батарейками» , которые производят, хранят и распределяют необходимую для клетки энергию.
Человеческие клетки содержат в среднем 1500 митохондрий. Их особенно много в клетках с интенсивным метаболизмом (например, в мускулах или печени) .
Митохондрии подвижны и перемещаются в цитоплазме в зависимости от потребностей клетки. Благодаря наличию собственной ДНК они размножаются и самоуничтожаются независимо от деления клетки.
Клетки не могут функционировать без митохондрий, без них жизнь не возможна.

Дыхание клетки

Кроме пищеварения, есть вторая часть или этап. Это дыхание. Мы дышим и нагнетаем воздух в легкие , но это не основная часть дыхания. Дыхание, это когда наши клетки, используя кислород, сжигают питательные вещества до воды и углекислого газа, чтобы получить энергию. Это конечный этап получения энергии который проходит в каждой нашей клетке.

Основным источником питания человека являются углеводы, накапливаемые в мышцах в виде гликогена, гликогена обычно хватает на 40-45 минут бега. По истечении этого времени организм должен переключиться на другой источник энергии. Это жиры. Жиры — это альтернативная энергия гликогену.

Альтернативная энергия — это значит необходимость выбора одного из двух  источников энергии или жиры или гликоген. Наш организм может получать энергию только из какого-то одного источника.

Бег на длинные дистанции  отличается от бега на короткие дистанции  тем, что организм стайера неизбежно переходит к использованию мышечных жиров как дополнительного источника энергии.

Жирные кислоты — это не самый удачный заменитель углеводов, так как на их выделение и использование уходит гораздо больше энергии и  времени. Но если гликоген закончился, то организму ничего не остается, как пустить в ход жиры, добывая таким способом необходимую энергию. Получается, что жиры это всегда запасной вариант для организма.

Замечу, что используемые при беге жиры — это жиры, содержащиеся в мышечных волокнах, а не жировые прослойки, покрывающие  тело.

При сжигании или расщеплении любого органического вещества получаются отходы производства, это углекислый газ и вода. Наша органика, это белки, жиры и углеводы.   Углекислый газ  выдыхается вместе с воздухом, а вода используется организмом или выводится с потом или мочой.

Переваривая питательные вещества, наш организм какую-то часть энергии теряет в виде тепла. Так греется и теряет энергию в пустоту двигатель в автомобиле, так и мышцы бегуна тратят огромное количество энергии. превращая химическую энергию в механическую. Причем КПД составляет порядка 50%, то есть половина энергии уходит в виде тепла в воздух.

Можно выделить основные этапы энергетического обмена:

Мы едим, чтобы получить питательные вещества, расщепляем их, потом при помощи кислорода идет процесс окисления, в итоге получаем энергию. Часть энергии всегда уходит в виде тепла, а часть мы запасаем. Энергия запасается в виде химического соединения которое называется — АТФ. 

Понятие метаболизма

Метаболизм — совокупность всех химических реакций, протекающих в живом организме. Значение метаболизма состоит в создании необходимых организму веществ и обеспечении его энергией.

Выделяют две составные части метаболизма — катаболизм и анаболизм.

Составные части метаболизма

Часть
Характеристика
Примеры
Затраты энергии
Катаболизм (энергетический обмен, диссимиляция)
Совокупность химических реакций, приводящих к образованию простых веществ из более сложных
Гидролиз полимеров до мономеров и расщепление последних до низкомолекулярных соединений углекислого газа, воды, аммиака и других веществ
Энергия выделяется
Анаболизм (пластический обмен, ассимиляция)
Совокупность химических реакций синтеза сложных веществ из более простых
Образование углеводов из углекислого газа и воды в процессе фотосинтеза, реакции матричного синтеза
Энергия поглощается

Процессы пластического и энергетического обмена неразрывно связаны между собой. Все синтетические (анаболические) процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления (катаболизма) протекают лишь при участии ферментов, синтезируемых в процессе ассимиляции.

Роль ФТФ в метаболизме

Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам.

АТФ (аденозинтрифосфорная кислота) — мононуклеотид, состоящий из аденина, рибозы и трёх остатков фосфорной кислоты, соединяющихся между собой макроэргическими связями.

В этих связях запасена энергия, которая высвобождается при их разрыве:
АТФ + H2O → АДФ + H3PO4 + Q1
АДФ + H2O → АМФ + H3PO4 + Q2
АМФ + H2O → аденин + рибоза + H3PO4 + Q3,
где АТФ — аденозинтрифосфорная кислота; АДФ — аденозиндифосфорная кислота; АМФ — аденозинмонофосфорная кислота; Q1 = Q2 = 30,6 кДж; Q3 = 13,8 кДж.
Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования. Фосфорилирование — присоединение остатка фосфорной кислоты к АДФ (АДФ + Ф → АТФ). Он происходит с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 мин).
Энергия, накопленная в молекулах АТФ, используется организмом в анаболических реакциях (реакциях биосинтеза). Молекула АТФ является универсальным хранителем и переносчиком энергии для всех живых существ.

Как расходуется энергия во время тренировки?

Начало тренировки

В самом начале тренировки, или когда энергозатраты резко возрастают (спринт), потребность в энергии больше, чем уровень, с которым происходит синтез АТФ с помощью окисления углеводов. Вначале углеводы «сжигаются» анаэробно (без участия кислорода), это процесс сопровождается выделением молочной кислоты (лактата). В результате освобождается некоторое количество АТФ – меньше, чем при аэробной реакции (с участием кислорода), но быстрее.

Другим «быстрым» источником энергии, идущим на синтез АТФ, является креатин фосфат. Небольшие количества этого вещества содержатся в мышечной ткани. При распаде креатин фосфата освобождается энергия, необходимая для восстановления АДФ до АТФ. Этот процесс протекает очень быстро, и запасов креатин фосфата в организме хватает лишь на 10-15 секунд «взрывной» работы, т.е. креатин фосфат является своеобразным буфером, покрывающим краткосрочный дефицит АТФ.

Начальный период тренировки

В это время в организме начинает работать аэробный метаболизм углеводов, прекращается использование креатин фосфата и образование лактата (молочной кислоты). Запасы жирных кислот мобилизуются и становятся доступными как источник энергии для работающих мышц, при этом повышается уровень восстановления АДФ до АТФ за счет окисления жиров.

Основной период тренировки

Между пятой и пятнадцатой минутой после начала тренировки в организме повышенная потребность в АТФ стабилизируется. В течение продолжительной, относительно ровной по интенсивности тренировки синтез АТФ поддерживается за счет окисления углеводов (гликогена и глюкозы) и жирных кислот. Запасы креатин фосфата в это время постепенно восстанавливаются.

Креатин является аминокислотой , которая синтезируется в печени из аргинина и глицина. Именно креатин позволяет спортсменам выдерживать высочайшие нагрузки с большей легкостью. Благодаря его действию в мышцах человека задерживается выделение молочной кислоты, которая и вызывает многочисленные мышечные боли. С другой стороны креатин позволяет производить сильные физические нагрузки благодаря высвобождению большого количества энергии в организме.

При возрастании нагрузки (например, при беге в гору) расход АТФ увеличивается, причем, если это возрастание значительное, организм вновь переходит на анаэробное окисление углеводов с образованием лактата и использование креатин фосфата. Если организм не успевает восстанавливать уровень АТФ, может быстро наступить состояние усталости.

Какие источники энергии используются в процессе тренировки?

Углеводы являются самым важным и самым дефицитным источником энергии для работающих мышц. Они необходимы при любом виде физической активности. В организме человека углеводы хранятся в небольших количествах в виде гликогена в печени и в мышцах. Во время тренировки гликоген расходуется, и вместе с жирными кислотами и глюкозой, циркулирующей в крови, используется как источник мышечной энергии. Соотношение различных используемых источников энергии зависит от типа и продолжительности упражнений.

Несмотря на то, что в жире больше энергии, его утилизация происходит медленнее, и синтез АТФ через окисление жирных кислот поддерживается использованием углеводов и креатин фосфата. Когда запасы углеводов истощаются, организм становится не в состоянии переносить высокие нагрузки. Таким образом, углеводы являются источником энергии, лимитирующим уровень нагрузки во время тренировки.

Виды углеводов

Углеводы — это полиатомные альдегидо- или кетоспирты, которые подразделяются в зависимости от количества мономеров на моно-, олиго- и полисахариды. Основные представители углеводов представлены в таблице 1.

Таблица 1. Основные представители углеводов

Углеводы Основные представители
Моносахариды Гексозы (глюкоза, манноза, галактоза, фруктоза), триозы, тетрозы, пентозы
Производные моносахаридов Сахарные кислоты, дезоксисахара, аминосахара, сиаловые кислоты
Дисахариды Мальтоза, лактоза, сахароза
Олигосахариды Мальтодекстрин

Полисахариды:

  • гомополисахариды
  • гетерополисахариды
Крахмал, гликоген, целлюлоза Гликозаминогликаны

Моносахариды (глюкоза, фруктоза, галактоза и др.), олигосахариды (сахароза, мальтоза, лактоза) и перевариваемые полисахариды (крахмал, гликоген) являются основными источниками энергии, а также выполняют пластическую функцию.

Неперевариваемые полисахариды (целлюлоза, гемицеллюлоза и др.), или пищевые волокна, играют в питании важнейшую роль, участвуя в формировании каловых масс, регулируя моторную функцию кишечника, выступая в качестве сорбентов (см. табл. 2). Пектины (коллоидные полисахариды) и пропектины (комплексы пектинов с целлюлозой), камеди, слизи используются в диетотерапии в связи с их детоксицирующим эффектом. К пищевым волокнам относят и не являющийся углеводом лигнин.

Перевариваемые углеводы в тонкой кишке расщепляются до дисахаридов, а далее, путем пристеночного пищеварения, до моносахаридов.

Таблица 2. Роль неперевариваемых полисахаридов (пищевых волокон) в питании

  Основные эффекты
Прием пищи
  • увеличение объема пищи и периода ее приема;
  • снижение энергетической плотности пищи;
  • усиление чувства насыщения
Влияние на верхние отделы желудочно-кишечного тракта
  • торможение опорожнения желудка;
  • стимуляция процессов желчеотделения
Влияние на тонкую кишку
  • связывание нутриентов, торможение абсорбции глюкозы, аминокислот и холестерина, токсических веществ;
  • торможение гидролиза крахмала
Влияние на толстую кишку
  • нормализация состава кишечной микрофлоры;
  • формирование каловых масс и повышение скорости их транзита 

Метаболизм глюкозы

Всасывание моносахаров происходит путем облегченной диффузии и активного транспорта, что обеспечивает высокую их абсорбцию даже при низкой концентрации в кишечнике. Основным углеводным мономером является глюкоза, которая изначально по системе воротной вены доставляется в печень, а далее или метаболизируется в ней, или поступает в общий кровоток и доставляется в органы и ткани.

Метаболизм глюкозы в тканях начинается с образования глюкозо- 6-фосфата, который, в отличие от свободной глюкозы, не способен покидать клетку. Дальнейшие превращения этого соединения идут в следующих направлениях:

  • расщепление вновь до глюкозы в печени, почках и эпителии кишечника, что позволяет поддерживать постоянный уровень сахара в крови;
  • синтез депонируемой формы глюкозы — гликогена — в печени, мышцах и почках;
  • окисление по основному (аэробному) пути катаболизма;
  • окисление по пути гликолиза (анаэробного катаболизма), обеспечивающего энергией интенсивно работающие (мышечная ткань) или лишенные митохондрий (эритроциты) ткани и клетки;
  • по пентозофосфатному пути превращений, происходящему под действием коферментной формы витамина B1, в ходе которого генерируются продукты, используемые в синтезе биологически значимых молекул (НАДФ∙Н2, нуклеиновых кислот).

Таким образом, метаболизм глюкозы может происходить по различным направлениям, использующим ее энергетический потенциал, пластические возможности или способность депонироваться.

Источники энергии при продолжительной работе.

Источниками энергии для организма человека при продолжительной аэробной работе, необходимые для образования АТФ служат гликоген мышц, глюкоза в крови, жирные кислоты, внутримышечный жир. Этот процесс запускается при длительной аэробной работе. Например, жиросжигание (окисление жиров) у начинающих бегунов начинается после 40 минут бега во 2-й пульсовой зоне (ПЗ). У спортсменов процесс окисления запускается уже на 15-20 минуте бега. Жира в организме человека достаточно для 10-12 часов непрерывной аэробной работы.

При воздействии кислорода молекулы гликогена, глюкозы, жира расщепляются синтезируя АТФ с выделением углекислого газа и воды. Большинство реакций происходит в митохондриях клетки.

Гликоген + Кислород   ⇒     АТФ + Углекислый газ + Вода

Образование АТФ с помощью данного механизма происходит медленнее, чем с помощью источников энергии, используемых при кратковременной  и непродолжительной работе. Необходимо от 2 до 4 минут, прежде чем потребность клетки в АТФ будет полностью удовлетворена с помощью рассмотренного аэробного процесса. Такая задержка вызвана тем, что требуется время, пока сердце начнет увеличивать подачу крови обогащенной кислородом мышцам, со скоростью необходимой для удовлетворения потребностей мышц в АТФ.

Жир + Кислород  ⇒    АТФ + Углекислый газ + Вода

Фабрика по окислению жира в организме является самой энергоемкой. Так как при окислении углеводов, из 1 молекулы глюкозы производится 38 молекул АТФ. А при окислении 1 молекулы жира – 130 молекул АТФ.  Но происходит это гораздо медленнее. К тому же для производства АТФ за счет окисления жира требуется больше кислорода, чем при окислении углеводов. Еще одна особенность окислительной, аэробной фабрики – она набирает обороты постепенно, по мере увеличения доставки кислорода и увеличения концентрации в крови выделившихся из жировой ткани жирных кислот.  

Больше полезной информации и статей вы можете найти ЗДЕСЬ.

Если представить все энергообразующие системы (энергетический обмен) в организме в виде топливных баков, то выглядеть они будут так:

  1. Самый маленький бак – КреатинФосфат (это как 98 бензин). Он находится как бы ближе к мышце и запускается в работу быстро. Этого «бензина» хватает на 9 сек. работы.
  2. Средний бак – Гликоген (92 бензин). Этот бак находится чуть дальше в организме и топливо из него поступает с 15-30 секунды физической работы. Этого топлива хватает на 1-1,5 часа работы.
  3. Большой бак – Жир (дизельное топливо). Этот бак находится далеко и прежде, чем топливо начнет поступать из него пройдет 3-6 минут.  Запаса жира в организме человека на 10-12 часов интенсивной, аэробной работы.

Все это я придумал не сам, а брал выжимки из книг, литературы, интернет-ресурсов и постарался лаконично донести до вас. Если остались вопросы — пишите.

Как происходит процесс в организме

Энергетический обмен

У аэробных организмов энергетический обмен происходит в три этапа:

  1. Подготовительный. Подготовительная стадия проходит в пищеварительном тракте или пищеварительных вакуолях. Во время этого этапа биополимеры распадаются до мономеров: белки — до аминокислот, углеводы — до глюкозы, липиды — до глицерина и жирных кислот. Энергия, получаемая от этого процесса, рассеивается в виде тепла.
  2. Бескислородный или гликолиз. Это вторая стадия энергетического обмена, которая проходит в цитоплазме клеток. В результате процессов окисления без участия кислорода мономеры биополимеров распадаются на более простые соединения. Это молочная кислота, этиловый спирт, ацетон, уксусная кислота и т. п. Энергия, получаемая в результате этого процесса, используются на синтез АТФ.
  3. Кислородный. Последняя стадия энергетического обмена проходит в митохондриях и заключается в дальнейшем окислении веществ, уже с участием кислорода, до конечных продуктов: углекислого газа и воды. Энергия также используется на синтез АТФ.

У анаэробных организмов, которые обитают в бескислородной среде и могут обходиться без него, энергетической обмен проходит в два этапа (подготовительный и гликолиз). При двухэтапном процессе запасы энергии гораздо меньше, чем при трехэтапном.

Пластический обмен

Пластический метаболизм состоит из:

  1. Фотосинтеза. Этот процесс свойственен растениям и некоторым видам бактерий, которые могут самостоятельно синтезировать органические вещества из неорганических соединений. Главным условием для протекания такого процесса являются солнечная энергия и солнечный свет.
  2. Хемосинтеза. Процесс протекает у некоторых видов бактерий (железобактерии, водородные, серные, тионовые, нитрифицирующие), которые также могут самостоятельно преобразовывать неорганические соединения в органические. Для жизнедеятельности этим видам необходим диоксид углерода, а не кислород.
  3. Биосинтеза. Этот процесс синтеза природных органических свойственен живым организмам.

Выделяют следующие виды биосинтеза:

  1. Синтез белков. Белки — это высокомолекулярные соединения, которые состоят из аминокислот. Значение белков в живом организме очень велико, их функции разнообразны. Они активно участвуют в процессе воспроизводства живой материи, отвечает за опорную функцию, обеспечивают сократительную функцию мышц, участвуют в защитных реакциях. 
  2. Синтез нуклеиновых кислот. Нуклеиновые кислоты состоят из нуклеотидов и отвечают за хранение наследственной информации и синтез белка. Они необычайно важны для организма. Животные организмы могут синтезировать нуклеиновые кислоты из простых соединений.
  3. Синтез жиров. Жиры входят в состав сложных органических веществ, которые называются липидами. Они выполняют несколько важных функций. Во-первых, окисляются, освобождая энергию. Во-вторых, являются пластическим веществом, которые образовывают тканевые структуры. В-третьих, имеют свойство превращаться в гликоген, который становится для организма источником глюкозы. В-четвертых, они откладываются в виде жировых отложений и являются тем запасом энергии для человека, который можно будет расходовать по мере необходимости. Наконец, в жирах растворяются витамины A, D, Е и K.
  4. Синтез углеводов. Углеводы бывают простыми и сложными. С пищей поступают, как правило, сложные углеводы: полисахариды и дисахариды. Когда они расщепляются, в кровь попадают глюкоза, фруктоза и галактоза. Главная функция углеводов заключается в поддержании оптимального значения глюкозы в крови человека.

§ 20. Общая характеристика обмена веществ и преобразования энергии

Как уже отмечалось, для протекания процессов метаболизма необходимо поступление в организм из окружающей среды определенных веществ. В организме эти вещества подвергаются различным химическим превращениям. Одни из них используются для образования более сложных соединений, т. е. в качестве строительного материала. Другие вещества, наоборот, подвергаются расщеплению и окислению, в результате чего выделяется необходимая организму энергия. Таким образом, метаболизм складывается из реакций двух противоположных типов — синтеза и расщепления веществ.

Совокупность процессов расщепления сложных органических соединений до более простых веществ называется катаболизмом, диссимиляцией или энергетическим обменом. В результате реакций катаболизма органические соединения подвергаются не только расщеплению, но и окислению. Все это приводит к высвобождению заключенной в них энергии (рис. 20.1)

Из курса химии вы знаете, что горение органических веществ также сопровождается их расщеплением, окислением и выделением энергии. Однако при горении органические соединения разрушаются быстро, с бурным высвобождением энергии, причем почти вся она выделяется в виде теплоты. В ходе энергетического обмена, наоборот, расщепление и окисление органических веществ происходит ступенчато, при участии ряда ферментов. Поэтому энергия высвобождается поэтапно, небольшими порциями. При этом около 50 % выделившейся энергии постепенно рассеиваются в виде тепла. Остальные 50 % используются клетками для образования молекул АТФ, которые являются поставщиками энергии для различных процессов жизнедеятельности (вспомните каких). В связи с этим катаболизм и называется энергетическим обменом.

К процессам катаболизма относятся клеточное дыхание и брожение. Конечными продуктами энергетического обмена являются вода, углекислый газ, аммиак и др.

Реакции синтеза органических соединений из более простых веществ относятся к анаболизму (ассимиляции, пластическому обмену). Эти процессы протекают с поглощением энергии (см. рис. 20.1). В результате ассимиляции из веществ, поступивших в клетки, синтезируются органические соединения, свойственные данному организму, — белки, углеводы, липиды и т. д. Они используются для построения и обновления различных клеточных и внеклеточных структур: органоидов, цитоскелета, плазмалеммы, межклеточного вещества и др. Продукты пластического обмена могут также откладываться в качестве резервных веществ, т. е. запасаться в организме.

Примерами процессов анаболизма могут служить фотосинтез, биосинтез ДНК (репликация), биосинтез РНК, белков, полисахаридов, липидов и т. д.

В организме процессы диссимиляции и ассимиляции протекают взаимосвязанно. Так, продукты катаболизма могут использоваться в качестве строительного материала в реакциях анаболизма. Поставщиком энергии для протекания таких процессов биосинтеза является АТФ, которая образуется при энергетическом обмене. В то же время реакции диссимиляции катализируются ферментами, которые синтезируются в процессах ассимиляции. Следовательно, реакции катаболизма не могут осуществляться без реакций анаболизма, и наоборот.

Процессы энергетического и пластического обмена протекают в организме одновременно, но не всегда с одинаковой интенсивностью. Например, в молодом организме в период активного роста и развития преобладают анаболические процессы. В старом организме баланс, как правило, смещается в сторону катаболизма. Такое же явление наблюдается при недостаточном питании и (или) тяжелых физических нагрузках. У животных и человека интенсивность процессов ассимиляции и диссимиляции регулируется нервной и эндокринной системами.

Следует еще раз подчеркнуть, что процессы энергетического и пластического обмена тесно связаны не только на уровне отдельно взятого организма. В биосфере автотрофы из неорганических веществ синтезируют органические (ассимиляция), которые служат пищей гетеротрофным организмам, передаваясь по цепям питания и трансформируясь на каждом трофическом уровне. Расщепление этих соединений (диссимиляция) приводит к образованию неорганических веществ, необходимых автотрофным организмам. Таким образом, взаимосвязь процессов анаболизма и катаболизма лежит в основе круговорота веществ, обеспечивая существование и стабильность биосферы.

Понравилась статья? Поделиться с друзьями:
Лесные поляны
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: