Электрические свойства древесины кратко

4. электрические и акустические свойства древесины. материаловедение: конспект лекций [litres]

Что такое диэлектрик жидкий?

Поляризация данного вида происходит в поле электрического тока. Жидкостные токонепроводящие вещества используются в технике для заливки или пропитки материалов. Есть 3 класса жидких диэлектриков:

Нефтяные масла — являются слабовязкими и в основном неполярными. Их часто используют в высоковольтных аппаратурах: высоковольтные воды. — это неполярный диэлектрик. Кабельное масло нашло применение в пропитке изоляционно-бумажных проводов с напряжением на них до 40 кВ, а также покрытий на основе металла с током больше 120 кВ. Масло трансформаторное по сравнению с конденсаторным имеет более чистую структуру. Данный вид диэлектрика получил широкое распространение в производстве, несмотря на большую себестоимость по сравнению с аналоговыми веществами и материалами.

Что такое диэлектрик синтетический? В настоящее время практически везде он запрещён из-за высокой токсичности, так как производится на основе хлорированного углерода. А жидкий диэлектрик, в основе которого кремний органический, является безопасным и экологически чистым. Данный вид не вызывает металлической ржавчины и имеет свойства малой гигроскопичности. Существует разжиженный диэлектрик, содержащий фторорганическое соединение, которое особо популярно из-за своей негорючести, термических свойств и окислительной стабильности.

И последний вид, это растительные масла. Они являются слабо полярными диэлектриками, к ним относятся льняное, касторовое, тунговое, конопляное. Касторовое масло является сильно нагреваемым и применяется в бумажных конденсаторах. Остальные масла — испаряемые. Выпаривание в них обуславливается не естественным испарением, а химической реакцией под названием полимеризация. Активно применяется в эмалях и красках.

диэлектрическая проницаемость некоторых материалов

Материал Древесина Диэлектрическая проницаемость
Воздух 1,00 Ель сухая: вдоль волокон 3,06
в тангенциальном направлении 1,98
Парафин 2,00
в радиальном направлении 1,91
Фарфор 5,73
Слюда 7,1-7,7 Бук сухой: вдоль волокон 3,18
в тангенциальном направлении 2,20
Мрамор 8,34
в радиальном направлении 2,40
Вода 80,1

Данные для древесины показывают заметное различие между диэлектрической проницаемостью вдоль и поперек волокон; в то же время диэлектрическая проницаемость поперек волокон в радиальном и тангенциальном направлении различается мало. Диэлектрическая проницаемость в поле высокой частоты зависит от частоты тока и влажности древесины. С увеличением частоты тока диэлектрическая проницаемость древесины бука вдоль волокон при влажности от 0 до 12% уменьшается, что особенно заметно для влажности 12%. С увеличением влажности древесины бука диэлектрическая проницаемость вдоль волокон увеличивается, что особенно заметно при меньшей частоте тока.

В поле высокой частоты древесина нагревается; причина нагрева — потери на джоулево тепло внутри диэлектрика, происходящие под влиянием переменного электромагнитного поля. На этот нагрев расходуется часть подводимой энергии, величина которой характеризуется тангенсом угла потерь.

Тангенс угла потерь зависит от направления поля в отношении волокон: вдоль волокон он примерно вдвое больше, чем поперек волокон. Поперек волокон в радиальном и тангенциальном направлении тангенс угла потерь мало различается. Тангенс угла диэлектрических потерь, как и диэлектрическая проницаемость, зависит от частоты тока и влажности древесины. Так, для абсолютно сухой древесины бука тангенс угла потерь вдоль волокон с увеличением частоты сначала увеличивается, достигает максимума при частоте 10 7 гц, после чего начинает снова снижаться. В то же время при влажности 12% тангенс угла потерь с увеличением частоты резко падает, достигает минимума при частоте 10 5 гц, затем так же резко увеличивается.

Механические свойства древесины

Они характеризуют ее способность сопротивляться механическим усилиям. Эти качества древесины являются весьма важными при использовании древесины как конструкционного материала.

Механические свойства древесины делят на две группы: прочностные и упругие.

Прочностные свойства определяются напряжениями. Напряжение — это усилие, приходящееся на единицу площади поперечного сечения детали.

Наибольшее напряжение, которое может выдержать стержень из данной древесины, называют допускаемым напряжением, или пределом прочности. Эту характеристику прочностных свойств древесины изучают на специальных испытательных машинах, используя образцы, которые вырезают из различных пород древесины.

Второй немаловажной прочностной характеристикой древесины является ее твердость. Твердостью называют способность древесины сопротивляться внедрению в нее некоторого твердого тела

Испытания на твердость проводят в статических (когда в древесину вдавливают, например, стальной шарик) или в динамических (когда на древесину падает металлический шарик) условиях. В первом и во втором случае на поверхности древесины остаются отпечатки-вмятины, площадь которых характеризует твердость древесины.

Музыкальные инструменты являются изделиями долговременного употребления. Многие десятки лет работают они и не всегда в идеальных условиях. Особенно плохо приходится инструментам в условиях транспортировки. Поэтому корпуса инструментов предпочитают делать из твердолиственных пород и края инструментов обкладывать штапом из твердых пород.

Можно дать рекомендации по наиболее рациональному применению древесины в деталях музыкальных инструментов, в первую очередь грифа. Гриф щипковых музыкальных инструментов подвергается изгибу за счет натянутых струн. Поэтому для увеличения его жесткости годичные слои древесины заготовки лучше располагать в плоскости, перпендикулярной деке.

Различные породы древесины имеют довольно большие расхождения в значениях модулей упругости, причем значения модулей упругости (как и пределов прочности) у древесины различны в разных направлениях (в отличие от металлов).

Физические свойства диэлектриков

При удельном сопротивлении материала равном меньше 10-5 Ом*м их можно отнести к проводникам. Если больше 108 Ом*м — к диэлектрикам. Возможны случаи, когда удельное сопротивление будет в разы больше сопротивления проводника. В интервале 10-5-108 Ом*м находится полупроводник. Металлический материал — отличный проводник электрического тока.

Из всей таблицы Менделеева только 25 элементов относятся к неметаллам, причём 12 из них, возможно, будут со свойствами полупроводника. Но, разумеется, кроме веществ таблицы, существует ещё множество сплавов, композиций или химических соединений со свойством проводника, полупроводника или диэлектрика. Исходя из этого, трудно провести определённую грань значений различных веществ с их сопротивлениями. Для примера, при пониженном температурном факторе полупроводник станет вести себя подобно диэлектрику.

Виды токов

В основе электропроводимости диэлектриков лежат:

  • Токи абсорбционные — ток, который протекает в диэлектрике при постоянном токе до тех пор, пока не достигнет состояния равновесия, изменяя направление при включении и подаче на него напряжения и при отключении. При переменном токе напряжённость в диэлектрике будет присутствовать в нём всё время, пока находится в действии электрического поля.
  • Электронная электропроводность — перемещение электронов под действием поля.
  • Ионная электропроводность — представляет собой движение ионов. Находится в растворах электролитов — соли, кислоты, щёлочь, а так же во многих диэлектриках.
  • Молионная электропроводность — движение заряженных частиц, называемых молионами. Находится в коллоидных системах, эмульсиях и суспензиях. Явление движения молионов в электрическом поле называется электрофорезом.

Классифицируют по агрегатному состоянию и химической природе. Первые делятся на твёрдые, жидкостные, газообразные и затвердевающие. По химической природе делятся на органику, неорганику и элементоорганические материалы.

По агрегатному состоянию:

  • Электропроводимость газов.
    У газообразных веществ достаточно малая проводимость тока. Он может возникать при наличии свободных заряженных частиц, что появляется из-за воздействия внешних и внутренних, электронных и ионных факторов: излучение рентгена и радиоактивного вида, соударение молекул и заряженных частиц, тепловые факторы.
  • Электропроводимость жидкого диэлектрика.
    Факторы зависимости: структура молекулы, температура, примеси, присутствие крупных зарядов электронов и ионов. Электропроводимость жидких диэлектриков во многом зависит от наличия влаги и примесей. Проводимость электричества полярных веществ создаётся ещё при помощи жидкости с диссоциированными ионами. При сравнении полярных и неполярных жидкостей, явное преимущество в проводимости имеют первые. Если очистить жидкость от примесей, то это поспособствует уменьшению её проводимых свойств. При росте проводимости и его температуры возникает уменьшение её вязкости, приводящее к увеличению подвижности ионов.
  • Твёрдые диэлектрики.
    Их электропроводимость обуславливается как перемещение заряженных частиц диэлектрика и примесей. В сильных полях электрического тока выявляется электропроводимость.

пьезоэлектрические модули древесины

Открытое явление позволяет глубже изучить тонкую структуру древесины. Показатели пьезоэлектрического эффекта могут служить количественными характеристиками ориентации целлюлозы и поэтому очень важны для изучения анизотропии натуральной древесины и новых древесных материалов с заданными в определенных направлениях свойствами.

Величина, показывающая, во сколько раз увеличивается емкость конденсатора, если воздушную прослойку между пластинами заменить такой же толщины прокладкой из данного материала, называется диэлектрической проницаемостью этого материала. Диэлектрическая проницаемость (диэлектрическая постоянная) для некоторых материалов приведена в табл. 26.

Таблица 26. Диэлектрическая проницаемость некоторых материалов.

Материал

Диэлектрическая проницаемость

Древесина

Диэлектрическая проницаемость

Ель сухая: вдоль волокон

в тангенциальном направлении

в радиальном направлении

Бук сухой: вдоль волокон

в тангенциальном направлении

в радиальном направлении

Данные для древесины показывают заметное различие между диэлектрической проницаемостью вдоль и поперек волокон; в то же время диэлектрическая проницаемость поперек волокон в радиальном и тангенциальном направлении различается мало. Диэлектрическая проницаемость в поле высокой частоты зависит от частоты тока и влажности древесины. С увеличением частоты тока диэлектрическая проницаемость древесины бука вдоль волокон при влажности от 0 до 12% уменьшается, что особенно заметно для влажности 12% (рис. 45). С увеличением влажности древесины бука диэлектрическая проницаемость вдоль волокон увеличивается, что особенно заметно при меньшей частоте тока.

В поле высокой частоты древесина нагревается; причина нагрева — потери на джоулево тепло внутри диэлектрика, происходящие под влиянием переменного электромагнитного поля. На этот нагрев расходуется часть подводимой энергии, величина которой характеризуется тангенсом угла потерь.

Тангенс угла потерь зависит от направления поля в отношении волокон: вдоль волокон он примерно вдвое больше, чем поперек волокон. Поперек волокон в радиальном и тангенциальном направлении тангенс угла потерь мало различается. Тангенс угла диэлектрических потерь, как и диэлектрическая проницаемость, зависит от частоты тока и влажности древесины. Так, для абсолютно сухой древесины бука тангенс угла потерь вдоль волокон с увеличением частоты сначала увеличивается, достигает максимума при частоте 10 7 гц, после чего начинает снова снижаться. В то же время при влажности 12% тангенс угла потерь с увеличением частоты резко падает, достигает минимума при частоте 10 5 гц, затем так же резко увеличивается (рис. 46).

Таблица 27. Максимальная величина тангенса угла потерь для сухой древесины.

С увеличением влажности древесины бука тангенс угла потерь вдоль волокон резко растет при малой (3 х 10 2 гц) и большой (10 9 гц) частоте и почти не меняется при частоте 10 6 -10 7 гц (см. рис. 46).

Путем сравнительного исследования диэлектрических свойств древесины сосны и полученных из нее целлюлозы, лигнина и смолы было установлено, что эти свойства определяются в основном целлюлозой. Нагрев древесины в поле токов высокой частоты находит применение в процессах сушки, пропитки и склеивания.

Электрические и акустические свойства древесины.

Как показали многочисленные исследования электрических свойств древесины, ее электропроводность, т. е. способность проводить электрический ток, находится в обратной зависимости от ее электрического сопротивления. Существуют поверхностное и объемное сопротивления, которые в сумме дают полное сопротивление образца древесины, размещенного между двумя электродами. Объемное сопротивление характеризует препятствие прохождению тока сквозь толщу образца, а поверхностное – по поверхности. Показателями электрического сопротивления служат удельное объемное и удельное поверхностное сопротивления.

Исследования показали, что сухая древесина плохо проводит ток, но с повышением влажности ее сопротивление уменьшается. Это видно из данных, полученных при исследованиях (табл. 1).

Снижение поверхностного сопротивления происходит при увеличении влажности. Например, при увеличении влажности бука от 4,5 до 17 % поверхностное электрическое сопротивление уменьшается с 1,2 × 10 13 до 1 × 10 7 Ом.

Кроме того, в результате исследований установлено, что снижение электрического сопротивления древесины происходит при ее нагревании, особенно при ее низкой влажности Так, увеличение температуры от 20 до 94 °С снижает сопротивление абсолютно сухой древесины в 10 6 раз.

Акустические свойства. При исследованиях акустических свойств древесины установлено, что скорость распространения звука в древесине тем больше, чем меньше ее плотность и выше модуль упругости. Средние значения скорости звука вдоль волокон для комнатно—сухой древесины равны: дуб – 4720 м/с, ясень – 4730 м/с, сосна – 5360 м/с, лиственница – 4930 м/с. Далее исследования показали, что скорость звука поперек волокон в 3–4 раза меньше, чем вдоль волокон. Скорость распространения звука зависит от свойств материалов и в первую очередь от плотности, например в стали звук распространяется со скоростью 5050 м/с, в воздухе – 330 м/с, а в каучуке – 30 м/с. На данных, полученных при исследованиях акустических свойств древесины, построен ультразвуковой метод определения ее прочности и внутренних скрытых дефектов По существующим строительным нормам звукоизоляция стен и перегородок должна быть не ниже 40, а междуэтажных – 48 дБ. Согласно данным исследований звукопоглощающая способность древесины низка, например звукоизоляция сосновой древесины при толщине 3 см составляет 12 дБ, а дубовой при толщине 4,5 см – 27 дБ. Как установлено исследованиями, наилучшие акустические свойства в части наибольшего излучения звука имеет древесина ели, пихты и кедра, которая используется для изготовления многих музыкальных инструментов: щипковых, смычковых, клавишных и др. Как показала практика, наилучшими акустическими свойствами обладает древесина длительной выдержки – в течение 50 лет и более.

  • Интересные факты про кислоты по химии 8 класс кратко

      

  • Африка происхождение названия кратко

      

  • Влияние стронция на организм человека кратко

      

  • Сьюзен зонтаг магический фашизм кратко

      

  • Восприятие зрительных раздражений кратко

Зонная теория

Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).

На изображении ниже показаны три вида материалов с их энергетическими уровнями:

Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия

В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.

У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.

У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.

Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток. Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники. Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.

Способность проводить электрический ток характеризует электрическое сопротивление древесины. В общем случае полное сопротивление образца древесины, размещенного между двумя электродами, определяется как результирующее двух сопротивлений: объемного и поверхностного. Объемное сопротивление численно характеризует препятствие прохождению тока сквозь толщу образца, а поверхностное сопротивление определяет препятствие прохождению тока по поверхности образца. Показателями электрического сопротивления служат удельное объемное и поверхностное сопротивление. Первый из названных показателей имеет размерность ом на сантиметр (ом х см) и численно равен сопротивлению при прохождении тока через две противоположные грани кубика размером 1X1X1 см из данного материала (древесины). Второй показатель измеряется в омах и численно равен сопротивлению квадрата любого размера на поверхности образца древесины при подведении тока к электродам, ограничивающим две противоположные стороны этого квадрата. Электропроводность зависит от породы древесины и направления движения тока. В качестве иллюстрации порядка величии объемного и поверхностного сопротивления в табл. приведены некоторые данные.

влияние влажности на электрическое сопротивление древесины

Поверхностное сопротивление древесины также существенно снижается с увеличением влажности. Повышение температуры приводит к уменьшению объемного сопротивления древесины. Так, сопротивление древесины лжетсуги при повышении температуры с 22-23° до 44-45° С (примерно вдвое) падает в 2,5 раза, а древесины бука при повышении температуры с 20-21° до 50° С — в 3 раза. При отрицательных температурах объемное сопротивление древесины возрастает. Удельное объемное сопротивление вдоль волокон образцов березы влажностью 76% при температуре 0°С составило 1,2 х 10 7 ом см, а при охлаждении до температуры -24° С оно оказалось равным 1,02 х 10 8 ом см. Пропитка древесины минеральными антисептиками (например, хлористым цинком) уменьшает удельное сопротивление, в то время как пропитка креозотом мало отражается на электропроводности. Электропроводность древесины имеет практическое значение тогда, когда она применяется для столбов связи, мачт линий высоковольтных передач, рукояток электроинструментов и т. д. Кроме того, на зависимости электропроводности от влажности древесины основано устройство электрических влагомеров.

Понравилась статья? Поделиться с друзьями:
Лесные поляны
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: