Эндоплазматическая сеть

Эндоплазматическая сеть: важная фабрика клетки

Описание немембранных органоидов

Немембранными называются органоиды, которые лишены собственной замкнутой мембраны и, соответственно, не имеют четкой границы с жидкой средой.

  • Рибосомы — органоиды, которые участвуют в биосинтезе белка из аминокислот.
  • Клеточный центр — органоид, расположенный рядом с ядром и отвечающий за движение органоидов и деление клетки.

К немембранным органоидам относятся также реснички и жгутики, выполняющие функцию передвижения. Они выступают над поверхностью клетки и имеют в основе пучок микротрубочек. Реснички встречаются только в клетках животных, а жгутики можно обнаружить у животных, растений и бактерий.

Рис. 3. Реснички — органы передвижения клетки.

О том, что такое органоиды, как выглядят и где расположены основные части клетки, можно подготовить доклад по биологии для 9 класса.

Что мы узнали?

В зависимости от строения, органоиды клетки бывают мембранными и немембранными. Из всего списка органоидов самым важным является ядро, в котором заключена генетическая информация.

Функции гладкой (агранулярной) эндоплазматической сети

АЭС, не считая особенностей, свойственных для всех типов ЭПС, обладает собственными следующими функциями:

Детоксикационнная — ликвидация токсинов как внутри, так и снаружи клетки.

Фенобарбитал разрушается в клетках почек, а именно, в гепатоцитах, вследствие воздействия ферментов оксидазы.

Синтезирующая — выработка гормонов и холестерина. Последний выводится в нескольких местах сразу: половые железы, почки, печень и надпочечники. А в кишечнике синтезируются жиры (липиды), попадающие в кровь через лимфу.

АЭС способствует синтезу гликогена в печени, благодаря действию ферментов.

Транспортная — саркоплазматический ретикулум, он же специальная ЭПС в поперечно-полосатых мышцах, служит местом хранения кальций-ионов. А благодаря специализированным кальциевым помпам, он выбрасывает кальций прямо в цитоплазму, откуда моментально отправляет его в область каналов. Занимается мышечная ЭПС этим, вследствие изменения количества кальция особыми механизмами. Они находятся, в основном, в клетках сердца, скелетных мышц, а также в нейронах и яйцеклетке.

Растительная клетка и ее строение

Клетка — структурная единица живого организма. Как функциональная единица она обладает всеми свойствами живого: дышит, питается, ей свойствен обмен веществ, выделение, раздражимость, деление и самовоспроизведение себе подобных. Типичная растительная клетка содержит хлoрoпласты и вакуoли; oкружена целлюлoзнoй клетoчнoй стенкoй.

Хлоропласты — двумембранные пластиды зелёного цвета (наличие пигмента хлорофилла). Отвечают за процесс фотосинтеза. Кроме хлоропластов, в растительной клетке имеются жёлто-оранжевые или красные пластиды (хромопласты) и бесцветные пластиды (лейкопласты).

Вакуоль — полость, занимающая 70—90 % общего объёма взрослой клетки, отделённая от цитоплазмы мембраной (тонопластом). Для рaстительных клеток хaрaктерно нaличие вaкуоли с клеточным соком, в котором рaстворены соли, сaхaрa, оргaнические кислоты. Вaкуоль регулирует тургор клетки (внутреннее давление).

Цитоплазма — внутренняя среда клетки, бесцветное вязкое образование, находящееся в постоянном движении. Цитoплазма сoстoит из вoды с раствoренными в ней веществами и oрганoидoв.

Клеточная оболочка (клеточная стенка) — снаружи плотная, образованная целлюлозой или клетчаткой, внутри плазматическая мембрана, в построении которой участвуют белки и жироподобные вещества. Ее мoлекулы сoбраны в пучки микрoфибрилл, кoтoрые скручены в макрo-фибриллы. Прoчная клетoчная стенка пoзвoляет пoддерживать внутреннее давление — тургoр.

 Ядро — носитель признаков и свойств клетки и всего организма. Ядро отделено от цитоплазмы двухслойной мембраной. В ядре находятся хромосомы и ядрышки. Число хромосом для вида постоянно. Ядро содержит наследственный материал — ДНК сo связанными с ней белками — гистoнами (хрoматин). Ядро заполнено ядерным соком (кариоплазмой). Ядрo кoнтрoлирует жизнедеятельнoсть клетки. Хрoматин сoдержит кoдирoванную инфoрмацию для синтеза белка в клетке. Вo время деления наследственный материал представлен хрoмoсoмами.

Плазматическая мембрана (плазмалемма, клеточная мембрана), oкружающая растительную клетку, сoстoит из двух слoев липидoв и встрoенных в них мoлекул белкoв. Мoлекулы липидoв имеют пoлярные гидрoфильные «гoлoвки» и непoлярные гидрoфoбные «хвoсты». Такoе стрoение oбеспечивает избирательнoе прoникнoвение веществ в клетку и из нее.

Лизосомы — мембранные тельца, содержащие ферменты внутриклеточного пищеварения. Переваривают вещества, избыточные органеллы (аутофагия) или целые клетки (аутолиз).

Тело высшего растения образовано клетками, которые отличаются друг от друга строением и функцией. Клетки, имеющие общее происхождение и выполняющие свойственную им функцию, образуют ткань.

Жизнедеятельность клетки

    1. Движение цитоплазмы осуществляется непрерывно и способствует перемещению питательных веществ и воздуха внутри клетки.
    2. Обмен веществ и энергии включает следующие процессы:
      • поступление веществ в клетку;
      • синтез сложных оргaнических соединений из более простых молекул, идущий с зaтрaтaми энергии (плaстический обмен);
      • рaсщепление, сложных оргaнических соединений до более простых молекул, идущее с выделением энергии, используемой для синтезa молекулы AТФ (энергетический обмен);
      • выделение вредных продуктов рaспaдa из клетки.
    3. Размножение клеток делением.
    4. Рост клеток — увеличение клеток до размеров материнской клетки.
    5. Развитие клеток — возрастные изменения структуры и физиологии клетки.

Схема. Типичная растительная клетка.

Нажмите на картинку для увеличения!

Это конспект по теме «Растительная клетка и ее строение». Выберите дальнейшие действия:

  • Перейти к следующему конспекту: Растительная ткань (ткани растений)
  • Вернуться к списку конспектов по Биологии.
  • Проверить знания по Биологии за 6 класс.

§ 13. Одномембранные органоиды

Мембранные органоиды имеются только в клетках эукариот. Внутреннее содержимое одномембранных органоидов отделено от гиалоплазмы одной мембраной, а двумембранных — двумя. Эти мембраны имеют сходное с плазмалеммой строение. К одномембранным органоидам клетки относятся: эндоплазматическая сеть, комплекс Гольджи, лизосомы и вакуоли.

Эндоплазматическая сеть (ЭПС), *или эндоплазматический ретикулум (ЭПР)* — это замкнутая система, которая состоит из соединенных между собой уплощенных полостей — цистерн и разветвленных каналов. Цистерны и каналы ЭПС пронизывают гиалоплазму клетки. Они ограничены мембраной, переходящей в наружную мембрану ядра (рис. 13.1).

Различают два типа ЭПС — шероховатую *(гранулярную)* и гладкую *(агранулярную)*. Шероховатая ЭПС представлена преимущественно цистернами, а гладкая — каналами. Мембраны шероховатой и гладкой ЭПС непосредственно переходят друг в друга. С наружной поверхностью мембраны шероховатой ЭПС связаны многочисленные рибосомы, которые и придают ей характерную «шероховатость». На мембране гладкой ЭПС рибосомы отсутствуют.

*В рибосомах шероховатой ЭПС синтезируются экспортные белки. Так называют белки, которые в конечном итоге будут выведены из клетки и начнут функционировать за ее пределами. Кроме того, рибосомы шероховатой ЭПС синтезируют белки лизосом и мембранные белки. Далее экспортные и лизосомные белки поступают внутрь цистерн, где начинается их созревание — молекулы приобретают определенную пространственную конфигурацию. Мембранные белки, как правило, не проникают внутрь шероховатой ЭПС, а встраиваются в ее мембрану.*

*Синтез всех белков начинается в свободных рибосомах, не прикрепленных к мембране ЭПС или ядра. Однако у ряда белков в начале полипептидой цепи имеется так называемая сигнальная для шероховатой ЭПС последовательность аминокислот. Рибосома, вырабатывающая такой белок, прикрепляется к мембране ЭПС. Далее растущая молекула белка через специальный мембранный канал поступает внутрь ЭПС, где происходит отщепление сигнальной последовательности. После окончания синтеза белка рибосома отделяется от мембраны ЭПС и распадается на субъединицы, а вся белковая молекула оказывается внутри цистерны. Так осуществляется образование лизосомных и экспортных белков.

Первые стадии синтеза интегральных мембранных белков происходят аналогично: рибосома связывается с мембраной ЭПС, начальный участок белковой молекулы проходит через мембранный канал. Однако в цепи такого белка содержится особая последовательность аминокислот, которая препятствует дальнейшему пересечению мембраны. В результате после окончания синтеза белковая молекула оказывается встроенной в мембрану.

Рибосомы, которые синтезируют белки, не имеющие сигнальной для шероховатой ЭПС последовательности, остаются свободными (т. е. не связанными с мембраной). В свободных рибосомах образуются белки, которые будут функционировать непосредственно в гиалоплазме, либо транспортироваться в ядро, митохондрии или пластиды и выполнять свои функции там.*

На мембране гладкой ЭПС происходит синтез различных углеводов и липидов. *Кроме того, гладкая ЭПС обеспечивает обезвреживание токсичных веществ и является внутриклеточным депо ионов Ca2+.*

*В волокнах поперечнополосатых мышц гладкая ЭПС окружает миофибриллы и депонирует ионы Ca2+. Они поглощаются путем активного транспорта, при этом концентрация Ca2+ в цитоплазме уменьшается и происходит расслабление мышечного волокна. Поступление нервного импульса на мембрану волокна вызывает резкий выброс ионов Ca2+ из гладкой ЭПС, что, в свою очередь, приводит к сокращению миофибрилл.*

Большинство веществ, синтезированных в шероховатой и гладкой ЭПС, накапливается в цистернах и каналах этого органоида. Затем молекулы синтезированных соединений заключаются в небольшие пузырьки, которые формируются из мембраны эндоплазматической сети. Мембранные пузырьки, которые отделились от ЭПС, доставляют содержащиеся в них вещества в комплекс Гольджи.

*Шероховатая ЭПС лучше всего развита в клетках, специализирующихся на секреции белков. Примерами могут служить клетки желез желудка и кишечника, вырабатывающие пищеварительные ферменты, а также клетки гипофиза и поджелудочной железы, секретирующие гормоны белковой природы. Гладкая ЭПС особенно выражена в клетках, синтезирующих большое количество углеводов и липидов. Так, в клетках печени она обеспечивает синтез гликогена и холестерина, а в клетках половых желез и коры надпочечников — стероидных гормонов.*

Роль эндоплазматической сети в обработке и транспорте липидов

Эндоплазматическая сеть (ЭПС) играет важную роль в обработке и транспорте липидов в клетке. Липиды являются одним из основных классов молекул, составляющих клеточные мембраны, и выполняют различные функции, такие как создание барьера между внутренней и внешней средой клетки, участие в сигнальных путях и хранение энергии.

ЭПС состоит из двух типов: гладкого эндоплазматического ретикулума (ГЭР) и шероховатого эндоплазматического ретикулума (ШЭР). ГЭР не содержит рибосомы на своей поверхности, в то время как ШЭР имеет рибосомы, прикрепленные к своей мембране. Оба типа ЭПС выполняют различные функции в обработке и транспорте липидов.

Гладкий эндоплазматический ретикулум (ГЭР)

ГЭР играет важную роль в синтезе и метаболизме липидов. Он содержит различные ферменты, которые участвуют в обработке липидов, таких как синтез холестерола, фосфолипидов и триглицеридов. ГЭР также участвует в детоксикации клетки, обрабатывая и утилизируя липидные токсины.

ГЭР также играет важную роль в транспорте липидов внутри клетки. Он образует специальные структуры, называемые липидные капли, которые служат для хранения и транспортировки липидов. Липидные капли могут быть перенесены из ГЭР в другие органеллы, такие как митохондрии или пероксисомы, где липиды могут быть дальше обработаны или использованы для энергии.

Шероховатый эндоплазматический ретикулум (ШЭР)

ШЭР играет важную роль в синтезе и модификации мембранных липидов. Рибосомы, прикрепленные к поверхности ШЭР, синтезируют белки, которые встраиваются в мембрану ЭПС. Эти белки могут быть ферментами, участвующими в синтезе липидов, или транспортными белками, которые перемещают липиды через мембрану ЭПС.

ШЭР также играет важную роль в синтезе фосфолипидов, основных компонентов клеточных мембран. Он содержит ферменты, которые катализируют реакции, приводящие к синтезу фосфолипидов из прекурсоров. Эти фосфолипиды затем могут быть транспортированы в другие органеллы или использованы для сборки новых клеточных мембран.

Таким образом, эндоплазматическая сеть играет важную роль в обработке и транспорте липидов в клетке. Она обеспечивает синтез, модификацию и транспорт различных липидов, необходимых для нормального функционирования клетки и ее органелл.

Значение ЭПС

Таким образом, эндоплазматическая сеть клетки выполняет множество необходимых функций для существования клеток. При его участии протекает транспортировка и синтез различных веществ, создание новой ядерной оболочки, накопление кальция.

Прежде чем перейти к строению и функциям ЭПС, дадим ее определение.

Что такое ЭПС в биологии?

Эндоплазматическая сеть, а также ЭПС или эндоплазматический ретикулум — сложная ультрамикроскопическая разветвленная и взаимосвязанная система мембран, относительно равномерно пронизывающая цитоплазматическую массу всех эукариотических клеток.

Что такое ЭПС теперь понятно. Вот как выглядит эндоплазматическая сеть на рисунке:

На рисунке ЭПС видно, из чего она состоит. Также рисунок ЭПС демонстрирует два вида ЭПС, о которых подробнее будет написано ниже.

Описание строения и функций ЭПС нужно начинать с того, что ЭПС — это мембранная органелла, которая включает в себя плоские мембранные мешочки: цистерны, каналы и трубочки. За счет такого строения ЭПС способствует существенному увеличению площади внутренней клеточной поверхности и делению клетки на секции. Строение эндоплазматической сети предполагает, что внутри клетки находится матрикс, представляющий собой умеренно плотный и рыхлый материал, то есть, продукт синтеза.

В каждой из секций клетки содержится различное количество химических веществ. По этой причине химические реакции в незначительном объеме клетки могут происходить одновременно или в определенной последовательности.

Особенность строения эндоплазматической сети — это ее открытие в перинуклеарное пространство, которое представляет собой полость, находящуюся между двух мембран кариолемы.

Еще один важный момент, касающийся строения ЭПС, заключается в том, что ее мембрана состоит из белков, липидов (в большей степени из фосфолипидов) и ферментов (аденозинтрифосфатаза, ферменты синтеза мембранных липидов).

Есть 2 вида ЭПС:

  1. Гладкая ЭПС или агранулярная аЭС. Гладкая эндоплазматическая сеть представлена трубочками: они анастамозируют между собой, у них нет на поверхности рибосом.
  2. Шероховатая ЭПС или гранулярная ЭПС,грЭС. Шероховатый эндоплазматический ретикулум состоит из цистерн, соединенных между собой и покрытых рибосомами.

В некоторых случаях выделяют переходящую или транзиторную эндоплазматическую сеть (тЭС). Она размещается в месте перехода одного вида ЭС в другой.

Гранулярная эндоплазматическая сеть характерная для всех клеток за исключением сперматозоидов. Степень развития этой сети зависит от специализации клетки.

Эндоплазматическая сеть в клетках эпителиальных железистых (печени — ее клетки синтезируют альбумины сыворотки крови, поджелудочной железы — ее клетки вырабатывают пищеварительные ферменты), фибробластах (клетки соединительной ткани — продуцируют белок коллаген), плазматических клетках (производят иммуноглобулины) развита очень сильно.

Агранулярная ЭС характерна для клеток надпочечников (они синтезируют стероидные гормоны), клеток мышц (они участвуют в обмене кальция) и клеток фундальных желез желудка (они работают над выделением ионов хлора).

Еще одни вид мембран цитоплазматической сети — разветвленные мембранные трубочки. Внутри них находится множество специфических ферментов, а также везикулы, которые представляют собой небольшие пузырьки, окруженные мембраной, чаще всего находящиеся около трубочек и цистерн. Их роль — обеспечение переноса синтезируемых веществ.

Это что касается особенностей строения эндоплазматической сети.

Теперь перейдем к функциям ЭПС.

Функции ЭПС

В первую очередь эндоплазматическая сеть — синтезирующая система. Но также она не реже занимается транспортом цитоплазматических соединений, что делает всю клетку способной на более сложные функциональные особенности.

Вышеописанные возможности ЭПС свойственны для любого из ее типов. Таким образом, эта органелла — универсальная система.

Общие функции для гранулярной и агранулярной сети:

  • Синтезирующая — выработка мембранных жиров (липидов) с помощью ферментов. Именно они позволяют ЭПС самостоятельно воспроизводиться.
  • Структурирующая — организация областей цитоплазмы и предотвращение попадания в нее ненужных веществ.
  • Проводящая — возникновение возбуждающих импульсов за счет реакции между мембранами.
  • Транспортная — выведение веществ даже сквозь мембранные стенки.

Помимо основных особенностей, каждый род эндоплазматических сетей обладает собственными специфическими функциями.

Строение эндоплазматической сети

Эндоплазматическая сеть или ЭПС — это совокупность мембран, относительно равномерно распределенная по цитоплазме клеток эукариот. ЭПС имеет огромное количество разветвлений и представляет собой сложно структурированную систему взаимосвязей.

ЭПС является одной из составляющих клеточной мембраны. Сама же она включается в себя каналы, трубочки и цистерны, позволяющие распределить внутреннее пространство клетки на определенные участки, а также значительно расширить ее. Все место внутри клетки заполняет матрикс — плотное синтезированное вещество, и каждый из его участков имеет разный химический состав. Поэтому в полости клетки может идти сразу несколько химических реакций, охватывающих только определенную область, а не всю систему. Заканчивается ЭПС перинуклеарным пространством.

Липиды и белки — основные вещества в составе мембраны эндоплазматической сети. Нередко встречаются еще и различные ферменты.

Виды ЭПС:

  • Агранулярная (аПС) — по сути своей — система скрепленных трубочек, не содержащая рибосом. Поверхность такой ЭПС, из-за отсутствия на ней чего-либо, гладкая.
  • Гранулярная (грЭС) — такая же, как и предыдущая, но имеет на поверхности рибосомы, благодаря чему наблюдаются шероховатости.

В некоторых случаях в этот список включают транзиторную эндоплазматическую сеть (тЭС). Второе ее название — переходящая. Она находится в зоне стыка двух видов сети.

Шероховатая ЭС может наблюдаться внутри всех живых клеток, исключая сперматозоиды. Однако, в каждом организме она развита в разной степени.

Так, например, грЭС достаточно высокоразвита в плазматических клетках, вырабатывающих иммуноглобулины, в фибробластах, продуцентах коллагена, и в железистых эпителиальных клетках. Последние находятся в поджелудочной железе, где синтезируют ферменты, и в печени, производя альбумины.

Гладкая ЭС представлена клетками надпочечников, которые, как известно, создают гормоны. Также ее можно обнаружить в мышцах, где проходит обмен кальция, и в фундальных желудочных железах, выделяющих хлор.

Также существует два вида внутренних мембран ЭПС. Первый являет собой систему трубочек с многочисленными разветвлениями, они насыщены разнообразными ферментами. Второй тип — везикулы — небольшие пузырьки с собственной мембраной. Они выполняют транспортную функцию для синтезируемых веществ.

Так и не нашли ответ на вопрос?
Просто напишите,с чем нужна помощь

Мне нужна помощь

Эндоплазматическая сеть мышечного волокна

Эндоплазматическая сеть мышечного волокна – мембранная органелла, представляющая собой разветвленную сеть трубочек и полостей. В мышечном волокне она представлена в виде шероховатой эндоплазматической сети и гладкой эндоплазматической сети (саркоплазматического ретикулума).

Шероховатая эндоплазматическая сеть

Шероховатая эндоплазматическая сеть – мембранная органелла, окружающая миоядра. На ее поверхности располагаются рибосомы. На рибосомах синтезируются разнообразные белки, необходимые для нормального функционирования мышечного волокна: миозин, актин, тропонин, тропомиозин, десмин, виментин и многие другие. Эти белки представляют собой полипептидные цепочки (цепочки аминокислот). В полостях шероховатой эндоплазматической сети эти цепочки аминокислот обрезаются и сворачиваются. Из  шероховатой  эндоплазматической сети белки перемещаются в виде мембранных пузырьков в цис-сеть комплекса Гольджи.  В комплексе Гольджи происходит заключительный этап формирования белковой молекулы, который называется процессингом или посттрансляционной модификацией. В результате возникает объемная трёхмерная структура белка.

Более подробно строение и функции мышц описаны в моих книгах:

  • Гипертрофия скелетных мышц человека
  • Биомеханика опорно-двигательного аппарата человека

Саркоплазматический ретикулум

Саркоплазматический ретикулум (гладкая эндоплазматическая сеть) – мембранная органелла, представляющая собой систему трубочек и мешочков (цистерн), окружающих миофибриллы. Известно, что миофибриллы не имеют оболочки, поэтому функцию оболочки выполняет саркоплазматический ретикулум, который окружает каждую миофибриллу наподобие «муфточки» или «кружевного рукава» (рис.1).

Рис.1. Саркоплазматический ретикулум (темно-голубой цвет) и трубочки Т-системы (светло-голубой цвет) мышечного волокна

Е.Вератти в начале ХХ века обнаружил тончайшую сеть в мышечном волокне. Однако только к середине века при помощи электронного микроскопа удалось установить структуру и функции саркоплазматического ретикулума.

Структура

Саркоплазматический ретикулум представляет собой единую систему компонентов различной формы — от трубочек до уплощенных цистерн. Благодаря ответвлениям продольные каналы, окружающие каждую миофибриллу соединяются друг с другом, а также с другими каналами, окружающими другие миофибриллы.

Функция

Основная функция саркоплазматического ретикулума – депонирование и выделение ионов кальция (Са2+). В состоянии покоя в саркоплазматическом ретикулуме депонируются ионы кальция. В саркоплазме мышечного волокна концентрация этих ионов очень низкая. В начале сокращения мышечного волокна продольные каналы саркоплазматического ретикулума становятся шире и короче и из него в саркоплазму выделяются ионы кальция,   необходимых для процесса сокращения мышечного волокна. После окончания процесса сокращения мышечного волокна ионы кальция закачиваются в саркоплазматический ретикулум посредством кальциевого насоса.

Т-система

От поверхности мышечного волокна к расширенным участкам саркоплазматического ретикулума направляются выпячивания сарколеммы – поперечные трубочки, называемые Т-системой (рис.2). Главная функция трубочек – проведение возбуждающих импульсов с поверхности мышечного волокна в его центральную зону, что приводит к выделению ионов кальция из саркоплазматического ретикулума.

Рис.2. Трубочки Т-системы (T-tubule) начинаются на поверхности мышечного волокна

Повреждение мышечных волокон

При повреждении мышечных волокон очень часто повреждается саркоплазматический ретикулум. Это приводит к значительному выбросу ионов кальция в саркоплазму мышечного волокна и активации ферментов – протеаз, разрушающих белки.

  1. Самсонова А.В. Гипертрофия скелетных мышц человека: Учебное пособие.- 5-е изд. – СПб.: Кинетика, 2018.– 159 с.

Функции шероховатой эндоплазматической сети

Специфические функции характерны также и для шероховатой (гранулярной) ЭПС. В их числе следующие:

  1. Синтез белков. Отличается процесс синтеза в грЭС тем, что начинается он исключительно на свободных полисомах, которые далее связываются с мембранной системой. Здесь синтезируются все белковые конструкции клеточного мембранного аппарата. Имеются исключения: часть гидрофобных белков, часть протеинов внутренних митохондриальных мембранных конструкций. Также не синтезируются в гранулярной сетке: внутренние мембранные образования хлоропластов, продукт внутренней фазы органелл конструкции мембраны, а также секреторные протеины, переносимые внутриклеточно и за её пределы во внеклеточный промежуток.
  2. Транспорт веществ. Ведётся по внутренней зоне сетки. По промежуткам ЭС вновь синтезированные белки проводятся к комплексу Гольджи, который, в свою очередь, выводит вещества из клеточных образований.
  3. Модификация белков пострансляционная. В их числе: гидроксилирование, сульфатирование, фосфорилирование. Происходит гликозилирование во взаимодействии с фермента гликозилтрансферазы. Указанные процессы идут перед секрецией, проводятся перед перемещением компонентов к некоторым органоидам. Таким, как лизосомы, комплекс Гольджи и, конечно, плазмолемма.
  4. Создание органоидов. Благодаря участию грЭС в сетке образуется комплекс Гольджи.

Базовой задачей сетки зернистого типа становится перемещение протеинов, синтезированных в рибосомах. Последние расположены на поверхности ретикулярной системы. При этом синтезированный протеин поступает внутрь конструкции ЭПС, где скручиваясь приобретает третичную структуру, пр.

Протеины, транспортируемые к цистернам значительно трансформируются по ходу перемещения. Проходят фосфорилирование, гликозилирование, пр. Обычный вариант перемещения для протеинов — это движение через шероховатый тип и эндоплазматическую сеть в комплекс Гольджи, через который они выводятся из клетки либо в ней же поступают к прочим органеллам, к примеру, лизосомам. Могут также откладываться внутри клеточной структуры в виде запасных гранул.

В гепатоцитах обе ЭПС: зернистого и гладкого типов принимают непосредственное участие в ходе детоксикации многочисленных ядовитых веществ, которые впоследствии подлежат выведению из клетки.

Внешняя мембрана и ретикулярная имеют избирательную проницаемость. По этой причине концентрация компонентов внутри и снаружи конструкций каналов сетки не равны, что непосредственно оказывает влияние на функционирование клетки.  

Пример:

Сетка содержащаяся в мышечных волоконных структурах содержит значительно большее количество ионов кальция, нежели цитоплазма. Между внутренней и наружной поверхностями сетки создаётся разница потенциалов. Такая система позволяет проводить импульсы. Так происходит процесс сокращения волоконных структур мышц.

Нет времени решать самому?

Наши эксперты помогут!

Контрольная

| от 300 ₽ |

Реферат

| от 500 ₽ |

Курсовая

| от 1 000 ₽ |

Нужна помощь

Функции шероховатой (гранулярной) эндоплазматической сети

Также, как и агранулярная, грЭС имеет свойственные только для себя самой функции:

  • Транспортная — перемещение веществ по внутримембранной секции, так, например, выработанные белки по поверхности ЭПС переходят в комплекс Гольджи, после чего выходят из клетки.
  • Синтезирующая — все, как и раньше: производство белков. Но начинается оно на свободных полисомах, и только после этого вещества связываются с ЭПС.
  • Благодаря гранулярной эндоплазматической сети синтезируются буквально все виды белков: секреторные, выходящие внутрь самой клетки, специфические во внутренней фазе органоидов, а также все вещества в мембране клетки, за исключением митохондрий, хлоропластов и некоторых типов белков.
  • Образующая — комплекс Гольджи создается в том числе благодаря грЭС.
  • Модификационная — включает в себя фосфориллирование, сульфатирование и гидроксилирование белков. Специальный фермент гликозилтранфераза обеспечивает проведение процесса гликозилирования. В основном он предшествует транспорту веществ к выходу из цитоплазмы либо происходит перед секрецией клетки.

Можно проследить, что функции грЭС направлены в основном на регуляцию транспорта белков, синтезирующихся на поверхности эндоплазматической сети в рибосомах. Они преобразуются в третичную структуру, скручиваясь, именно в ЭПС.

Типичное поведение белка заключается в поступлении в гранулированную ЭПС, после в аппарат Гольджи и, в конечном шаге, в выходе наружу к другим органоидам. Также он может отложиться, как запасной. Но часто, в процессе перемещения, он способен кардинально изменить состав и внешний вид: фосфориллироваться, например, или преобразоваться в гликопротеид.

Оба типа эндоплазматической сети способствуют детоксикации клеток печени, то есть выводу из нее ядовитых соединений.

ЭПС пропускает сквозь себя вещества не во всех участках, благодаря чему количество соединений в канальцах и снаружи их разная. По такому же принципу работает проницаемость внешней мембраны. Эта особенность играет определенную роль в жизнедеятельности клетки.

В клеточной цитоплазме мышц гораздо меньше кальций-ионов, чем в ее эндоплазматической сети. Следствием этого является удачное сокращение мышц, ведь именно кальций при выходе из каналов ЭПС обеспечивает этот процесс.

Не нашли ответ?
Просто напиши,с чем тебе нужна помощь

Мне нужна помощь

Строение клетки растения

В природе существуют как одноклеточные растения, так и многоклеточные. Например, в водной среде можно встретить одноклеточные водоросли, клетки которых имеют все функции, присущие живому организму.

Многоклеточная особь – это не просто набор клеток, а единый организм, состоящий из различных тканей и органов, которые взаимодействуют между собой.

Строение растительной клетки у всех растений схоже, их клетки состоят из одних и тех же компонентов. Рассмотрим состав растительной клетки:

  • оболочка (включает в себя цитоплазматическую мембрану и клеточную стенку из целлюлозы);
  • цитоплазма, с расположенными в ней митохондриями, хлоропластами, вакуолями и другими органоидами;
  • ядро, состоящие из ядерной оболочки, ядерного сока, ядрышка, хроматина.

Рис. 1. Строение клетки растения.

В отличие от животной растительная клетка имеет особую целлюлозную оболочку, вакуоли с клеточным соком и пластиды.

Изучение строения и функций растительной клетки показало, что:

ТОП-4 статьи

которые читают вместе с этой

  • самой значительной частью в организме является ядро, которое отвечает за все происходящие процессы. Оно содержит наследственную информацию, которая передаётся из поколения в поколение. От цитоплазмы отделяет ядро ядерная оболочка;
  • бесцветное вязкое вещество, которое наполняет клетку, называется цитоплазмой. Именно в ней находятся все органоиды;
  • под клеточной стенкой находится мембрана (тонопласт), которая отвечает за обмен веществ с окружающей средой. Это тоненькая плёнка, отделяющая оболочку от цитоплазмы;
  • клеточная стенка достаточно прочная, так как в её состав входит целлюлоза. Поэтому функциями стенки является защита и поддержание формы;
  • важными составными компонентами являются пластиды.

    Они могут быть цветными или бесцветными. Так, например, хлоропласты имеют зелёный цвет, именно в них происходит процесс фотосинтеза;

  • внутренняя полость, заполненная соком, называется вакуолью. Размер её зависит от возраста организма: чем он старше, тем больше вакуоль. В состав сока входит водный раствор минеральных солей и органических веществ. Он содержит различные сахара, ферменты, минеральные кислоты и соли, белки и пигменты;

Рис. 2. Изменения размера вакуоли при росте растения.

  • митохондрии способны передвигаться вместе с цитоплазмой, как и пластиды. Именно здесь происходит процесс дыхания и образования АТФ;
  • аппарат Гольджи может иметь различные формы (диски, палочки, зёрнышки). Его роль – накопление и выведение различных веществ;
  • рибосомы синтезируют белок. Находятся они в цитоплазме, внутри митохондрий и пластид.

Клеточное строение растений учёные открыли ещё в XVII веке. Клетки апельсиновой мякоти видны невооружённым глазом, но большинство клеток растений можно рассмотреть лишь под микроскопом.

Рис. 3. Строение аппарата Гольджи.

Что такое эндоплазматическая сеть

Определение

Эндоплазматическая сеть — внутриклеточный органоид, именуемый иначе эндоплазмати́ческим рети́кулумом. В сокращении обозначают ЭПС либо ЭПР. Представлен в виде разветвлённой ультрамикроскопической величины сетки. Компонентами которой служит система: уплощённых полостей, особого рода пузырьков, канальцев, имеющих мембранное окружение.

Сетка имеет непростую структуру и достаточно сложные взаимосвязи. Кроме того, ретикулярные составные в значительной мере не стабильны, они подвержены частым переменам. ЭПР находится в цитоплазме, разделяет её практически равномерно. Делит на секции, структурируя содержимое. Присутствует исключительно в клетках эукариотического типа.

Понравилась статья? Поделиться с друзьями:
Лесные поляны
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: