§ 10. Клеточная теория. Общий план строения клетки
Открытие клеток. Изучение клеток стало возможным благодаря изобретению микроскопа — прибора, предназначенного для получения увеличенных изображений. *Первый микроскоп появился в Европе в конце XVI в.*
Человеком, впервые увидевшим клетки при помощи микроскопа (рис. 10.1, а), был английский ученый Р. Гук. В 1665 г. при рассмотрении тонкого среза пробкового слоя древесной коры он обнаружил, что пробка разделена на множество крошечных ячеек (рис. 10.1, б). Эти ячейки, похожие на пчелиные соты, Гук назвал клетками. Тот же план строения он наблюдал и при изучении других тканей растений. Со временем термин «клетка» утвердился в биологии.
*Об открытии клеток Гук написал в своей книге «Микрография»: «Взяв кусочек чистой светлой пробки, я отрезал от него острым как бритва перочинным ножом очень тонкую пластинку. Когда затем я поместил этот срез на предметное стекло и стал разглядывать его под микроскопом, направив свет с помощью зеркала, я очень ясно увидел, что весь он пронизан отверстиями и порами. Эти поры были не слишком глубокими, а состояли из очень многих маленьких ячеек, вычлененных из одной длинной непрерывной поры особыми перегородками. Такое строение свойственно не одной только пробке. Я рассматривал при помощи своего микроскопа сердцевину бузины и различных деревьев, а также внутреннюю мякоть стебля тростника, некоторых овощей и других растений: фенхеля, моркови, лопуха, папоротника и т. п. И обнаружил у них всех тот же план строения, что и у пробки».*
Через несколько лет голландский натуралист А. ван Левенгук изготовил микроскоп, который обладал гораздо бóльшим увеличением. С его помощью исследователь обнаружил движущиеся микроскопические организмы — инфузории, амебы, подвижные бактерии. Также Левенгук впервые наблюдал клетки животных — эритроциты и сперматозоиды.
Микроскоп Левенгука представлял собой пластинку, в центре которой была одна линза (рис. 10.2). Наблюдателю нужно было смотреть через линзу на образец, закрепленный с другой стороны. Несмотря на простоту конструкции, микроскоп Левенгука позволял получить увеличение в несколько раз большее, чем у других микроскопов того времени. В течение жизни Левенгук изготовил не менее 25 микроскопов. Девять из них, сохранившиеся до наших дней, способны увеличивать изображение в 275 раз. Однако предполагается, что Левенгук создал микроскопы, которые могли давать увеличение до 500 раз.
*В XVIII в. было опубликовано много новых рисунков и описаний различных клеток, причем преимущественно растительных. Дело в том, что ткани животных легко повредить, вследствие чего ученым было трудно изготавливать препараты для исследования. Однако микроскоп в то время рассматривался главным образом как игрушка, поэтому большинство естествоиспытателей не придавало своим наблюдениям серьезного значения.*
Химический состав
Внутриклеточная среда исполняет функцию по обеспечению условий жизнедеятельности органелл, а также поддерживает тонус клетки на должном уровне.
Ее структуру составляют:
- гиалоплазма;
- клеточные элементы;
- цитоплазменные включения.
Гиалоплазма на 60-90% состоит из воды, 10-20% — белков, 2-3% — жиров и им подобных компонентов. На долю прочих составляющих приходится 1,5%. Органические и неорганические химические соединения (по 1%) представлены продуктами обменных процессов, а также необходимыми для органелл питательными веществами.
Установлено, что доля ДНК составляет 0,4%, РНК — 0,7%.
Химический состав цитоплазмы не является постоянным. Его колебания связаны с протекающими биохимическими реакциями, в результате которых одни вещества синтезируются, а другие — распадаются.
Синтезируются и расщепляются глюкоза, жирные кислоты, аминокислоты.
В качестве включений в цитоплазму можно рассматривать гликоген, крахмал и прочие соединения.
Движение цитоплазмы
Цитоплазма находится в постоянном движении, эта хаpaктеристика имеет огромное значение в жизни клетки. Благодаря движению возможны метаболические процессы внутри клетки и распределение синтезированных элементов между органеллами.
Биологи наблюдали движение цитоплазмы в больших клетках, при этом следя за перемещением вакуоль. За движение цитоплазмы отвечают микрофиламенты и микротрубочки, которые приводятся в действие при наличии молекул АТФ.
Движение цитоплазмы показывает, насколько активны клетки и способны к выживанию. Этот процесс зависим от внешних воздействий, поэтому малейшие изменения окружающих факторов приостанавливают или ускоряют его.
Роль цитоплазмы в биосинтезе белка. Биосинтез белка осуществляется при участии рибосом, они же непосредственно находятся в цитоплазме или на гранулярной ЭПС. Также через ядерные поры в цитоплазму поступает иРНК, которая несет информацию, скопированную с ДНК. В экзоплазме содержатся необходимые аминокислоты для синтеза белка и ферменты, катализирующие эти реакции.
Пластиды
Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.
Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.
Строение хлоропласта
Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.
Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.
Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.
Строение лейкопласта
Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.
Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.
Строение хромопласта
Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.
Строение клетки растения
В природе существуют как одноклеточные растения, так и многоклеточные. Например, в водной среде можно встретить одноклеточные водоросли, клетки которых имеют все функции, присущие живому организму.
Многоклеточная особь – это не просто набор клеток, а единый организм, состоящий из различных тканей и органов, которые взаимодействуют между собой.
Строение растительной клетки у всех растений схоже, их клетки состоят из одних и тех же компонентов. Рассмотрим состав растительной клетки:
- оболочка (включает в себя цитоплазматическую мембрану и клеточную стенку из целлюлозы);
- цитоплазма, с расположенными в ней митохондриями, хлоропластами, вакуолями и другими органоидами;
- ядро, состоящие из ядерной оболочки, ядерного сока, ядрышка, хроматина.
Рис. 1. Строение клетки растения.
В отличие от животной растительная клетка имеет особую целлюлозную оболочку, вакуоли с клеточным соком и пластиды.
Изучение строения и функций растительной клетки показало, что:
ТОП-4 статьи
которые читают вместе с этой
- самой значительной частью в организме является ядро, которое отвечает за все происходящие процессы. Оно содержит наследственную информацию, которая передаётся из поколения в поколение. От цитоплазмы отделяет ядро ядерная оболочка;
- бесцветное вязкое вещество, которое наполняет клетку, называется цитоплазмой. Именно в ней находятся все органоиды;
- под клеточной стенкой находится мембрана (тонопласт), которая отвечает за обмен веществ с окружающей средой. Это тоненькая плёнка, отделяющая оболочку от цитоплазмы;
- клеточная стенка достаточно прочная, так как в её состав входит целлюлоза. Поэтому функциями стенки является защита и поддержание формы;
-
важными составными компонентами являются пластиды.
Они могут быть цветными или бесцветными. Так, например, хлоропласты имеют зелёный цвет, именно в них происходит процесс фотосинтеза;
- внутренняя полость, заполненная соком, называется вакуолью. Размер её зависит от возраста организма: чем он старше, тем больше вакуоль. В состав сока входит водный раствор минеральных солей и органических веществ. Он содержит различные сахара, ферменты, минеральные кислоты и соли, белки и пигменты;
Рис. 2. Изменения размера вакуоли при росте растения.
- митохондрии способны передвигаться вместе с цитоплазмой, как и пластиды. Именно здесь происходит процесс дыхания и образования АТФ;
- аппарат Гольджи может иметь различные формы (диски, палочки, зёрнышки). Его роль – накопление и выведение различных веществ;
- рибосомы синтезируют белок. Находятся они в цитоплазме, внутри митохондрий и пластид.
Клеточное строение растений учёные открыли ещё в XVII веке. Клетки апельсиновой мякоти видны невооружённым глазом, но большинство клеток растений можно рассмотреть лишь под микроскопом.
Рис. 3. Строение аппарата Гольджи.
Функции
Основные функции цитоплазмы в клетке описаны в таблице.
Функция |
Значение |
Тургор |
Создаёт тургорное (внутреннее) давление при осмосе (односторонней диффузии) воды, поступающей в клетку. За счёт плотной оболочки клеток растений и грибов тургор выше, чем в животной клетке |
Транспорт |
Осуществляет транспорт веществ из внешней среды в клетку и обратно. Связывает деятельность органелл |
Клеточный гомеостаз |
Поддерживает постоянство внутренней среды клетки, придаёт форму, является вместилищем органелл |
Запас веществ |
Запасает и хранит вещества в виде клеточных включений |
Отделение цитоплазмы от мембраны при осмосе воды, выходящей наружу, называется плазмолизом. Обратный процесс – деплазмолиз – происходит при поступлении в клетку достаточного количества воды. Процессы характерны для любых клеток, кроме животной.
Рис. 3. Плазмолиз и деплазмолиз.
Что мы узнали?
Цитоплазма представляет собой полужидкую субстанцию, в которой находятся органеллы и включения клетки. Роль цитоплазмы в клетке важна для работы и взаимосвязи всех органелл. Подвижность и тургор цитоплазмы способствуют доставке веществ из внешней среды и обратно, а также внутриклеточному метаболизму. Без цитоплазмы клетка становится нежизнеспособной.
-
/10
Вопрос 1 из 10
Открытие протоплазмы
Дальнейшая разработка клеточной теории была связана с изучением внутренней структуры клеток. Пуркине назвал основное вещество клеток «протоплазмой», во всяком случае, применительно к зародышам животных, а Дюжарден для обозначения этого основного вещества ввел термин саркода, которым первоначально называл содержимое простейших животных — корненожек, жгутиконосцев и инфузорий.
Как уже было отмечено в главе 20, в конце 30-х и начале 40-х годов существовали две точки зрения на строение простейших. X. Эренберг (1838) отстаивал мысль, что инфузории имеют сложное строение, сравнимое со строением многоклеточных животных. Ошибка Эренберга сводится к тому, что он слишком прямолинейно сравнивал инфузорий с многоклеточными животными и не сумел установить, что описанные им многочисленные «желудки» инфузорий на самом деле являются непостоянными образованиями, а появляющимися и исчезающими пищеварительными вакуолями. В дальнейшем, через несколько десятилетий после Эренберга, было установлено, что строение инфузорий действительно может быть очень сложным.
В противовес мнению Эренберга, Дюжарден отстаивал элементарное устройство инфузорий и других одноклеточных организмов, которые, по его представлениям, состоят из саркоды и лишены каких бы то ни было органов. Простейших от остальных, многоклеточных животных отделил немецкий зоолог К. Зибольд, автор «Учебника сравнительной анатомии беспозвоночных животных» (1848); однако только после работ М. Шульпе, А. Келликера и, особенно, Э. Геккеля получила всеобщее признание мысль, что тело простейших (Protozoa) состоит из одной клетки, соответствующей бесчисленным клеткам, из которых построен организм остальных животных, получивших название многоклеточных.
Полужидкое, зернистое вещество, которое, по Дюжардену, заполняет тело простейших животных, видели также и в клетках растений. Это содержимое растительных клеток в период, предшествующий созданию клеточной теории, обнаружили Ф. Мейен и М. Шлейден, но не видели в нем носителя жизненных свойств клетки. Это было сделано позднее, когда Гуго фон Моль в работе «О движении сока внутри клетки» (1846) на основе наблюдений доказал, что протоплазма обладает способностью к .самостоятельному движению. Наблюдения Моля на растительных клетках подтвердили Ф. Кон (1850) и Н. Прингсгейм (1854). Кон утверждал, что по оптическим, физическим и химическим свойствам capкода, или сократимое вещество клеток животных, вполне соответствует протоплазме растительных клеток. Ф. Лейдиг в «Учебнике гистологии человека и животных» (1857) высказал мысль, что оболочка, которую ранее считали обязательной и важнейшей составной частью клетки, часто может отсутствовать и что основными структурными компонентами клетки являются протоплазма и ядро.
Симбиотическая теория
Чтобы выяснить механизм появления пластид, митохондрий и других органоидов, рассматривается теория эндосимбиоза. Ее суть заключается в совместной и взаимовыгодной жизни органеллы с клеткой. Впервые теорию предложил Шимпер в 1883 году. В 1867 ученые работали над двойственной природой лишайников.
Биолог Фамицын, учитывая теорию Шимпера, предположил, что хлоропласты, как лишайники и водоросли, относятся к симбионтам. Ученые доказали, что митохондрии — аэробные бактерии, которые не размножаются за пределами клеток. Общие свойства, характерные для митохондрий и пластид:
- наличие двух замкнутых мембран;
- размножение бинарным делением;
- ДНК не связана с гистонами;
- наличие своего аппарата синтеза белка.
В ДНК пластид и митохондрий, в отличие от аналогичных структур прокариот, нет интронов. А в ДНК хлоропластов закодирована информация о некоторых белках, остальные данные находятся в ядре клетки. В результате эволюции часть генетического материала из генома перешло в ядро, поэтому хлоропласты и митохондрии не размножаются независимо.
Археи и бактерии не склонны к фагоцитозу. Они питаются только осмотрофно. Множественные биологические и химические исследования указывают на химерную сущность бактерий. Ученые не выяснили, как сливаются организмы из нескольких доменов. В условиях современности выявлены организмы, которые содержат в себе другие клетки в качестве эндосимбионтов. Они отличаются от первичных эукариотов тем, что не интегрируются в одно целое, не имеют своей индивидуальности.
Интересным организмом считается Mixotricha paradoxa. Чтобы двигаться, она использует 250 000 бактерий, которые фиксируются на ее поверхности. Митохондрии у этого организма вторично потеряны. Внутри находятся сферические аэробные микроорганизмы, которые заменяют органеллы.
https://youtube.com/watch?v=FcW1aWYwhXc
Современная клеточная теория
Со времени основания клеточной теории осуществлялось развитие учения о клетке как элементарной микроскопической структуре организма. К первой половине 20 века стало ясно первоочередное значение клеточных структур в передаче наследственной информации. Благодаря успехам микроскопической техники обнаружено сложное строение клетки, описаны ее части и их функции. Описан способ образования новых клеток путем деления материнской клеточной структуры.
Все открытия в цитологии были учтены при разработке положений современной клеточной теории.
Рассмотрим сложившиеся к настоящему времени основные положения клеточной теории.
Первое положение клеточной теории изложено еще Теодором Шванном и лишь немного претерпело изменения. Ученый утверждал, что растительный и животный организм состоит из клеточных структур. Со временем науке стали известны и другие царства живых организмов. Поэтому данное положение было сформулировано по-иному.
В чем же суть первого положения современной клеточной теории? Всем известно,что организмы обладают клеточным строением, помимо этой структуры жизнь не существует. Сейчас известны только одни неклеточные существа – вирусы, однако к жизнедеятельности они способны только при проникновении внутрь клетки.
Причем согласно клеточной теории клетка считается функциональной единицей, то есть она способна жить, питаться, осуществлять обмен веществ. В этом она сравнима с целым организмом.
Второе утверждение клеточной теории говорит о том, что клетки обладают единым планом строения, то есть у всех клеточных структур есть оболочка, ядро, цитоплазма, а также другие части. Им характерен одинаковый состав,представленный такими веществами как белки, липиды, углеводы, нуклеиновые кислоты. Соответственно, при таком сходстве сохраняется и единый принцип жизнедеятельности.
Третий постулат современной клеточной теории сформулирован еще Рудольфом Вирховым. Именно он утверждал, что клетки могут появляться только из других таких же структур. В дальнейшем это подтвердилось наукой и до настоящего времени иных способов образования клеток не выявлено.
Согласно клеточной теории клетка – это основная единица организмов, хотя она способна и к самостоятельной жизнедеятельности. Действительно, мы знаем, что существуют одноклеточные существа, где клетка исполняет роль целого организма. На клеточном уровне обнаруживаются все свойства живого: способность к саморегуляции, размножение, рост и развитие, обмен веществ. Однако в многоклеточном организме, каждая группа клеток совершает какие-то специфические функции. Такое разделение функций в организме способствовало появлению значительных возможностей для адаптации к среде обитания.
В чем же значение теории клеточного строения организмов для человечества?
Очень хорошо оценил ее роль Ф.Энгельс, обозначив клеточную теорию как одно из главнейших достижений человечества наряду с законом сохранения энергии и эволюционной теорией. В своих трудах он писал, что данное открытие позволило понять единство развития всех живых существ. Однако, клетки способны видоизменяться и это явилось толчком эволюции организмов.
Клеточная теория имела большое значение для становления материалистических представлений в биологии и медицине. Благодаря полученным знаниям развиваются новые области науки – биотехнология, нанотехнология, клеточная инженерия, селекция микроорганизмов.
Основные характеристики
Внутренний и наружный слои внутриклеточного вещества отличаются по структуре и функциям.
Эктоплазма — наружный слой. Он более плотный, поскольку часто участвует в поступательных движениях (например, у простейших). В нем отсутствуют органеллы и нет гранул. Однако в ряде случаев могут присутствовать базальные тельца, к которым крепятся органы движения — реснички.
Консистенция гиалоплазмы — гелеобразная. Ее дисперсная среда четко структурирована и представляет собой нетекучую тиксотропную структуру.
Термин «тиксотропная среда» означает способность менять консистенцию под воздействием окружающих факторов. При этом гель, за счет разрушения микротрубочек, может переходить в менее вязкий золь (цитозоль).
Цитозоль не имеет цвета, он густой и прозрачный. Заполняет все свободное пространство от клеточной мембраны до центра клетки, равномерно распределяясь между органеллами. Своей слизистой консистенцией обеспечивает взаимосвязанную жизнь клеточных элементов. Главная характерная черта — циклоз или непрерывное движение, которое обеспечивает постоянное перемещение органелл. Протекание такого процесса обеспечивается за счет коллоидной консистенции цитоплазмы. Находясь в постоянном движении внутри клетки, она способна расти и воспроизводиться. Для ее нормальной жизнедеятельности необходимо наличие ядра.
Не менее важны такие особенности цитоплазмы, как:
- способность абсорбировать или выделять воду;
- содержание протеинов;
- она является местом, где происходят гликолиз и синтез АТФ;
- органоиды клетки регулируют концентрацию и месторасположение внутри клетки неорганических соединений.
Примеры в клетках растений и животных
Растения и животные (в т.ч. человек) имеют сходный по строению клеточный аппарат, потому что в нем содержится ядро (научный термин эукариоты). Содержащиеся в ядре цепочки ДНК обеспечивают наследственность в передаче признаков потомству. Ядро четко изолировано от цитоплазмы и в процессе размножения клетки претерпевает процессы деления (митоз и мейоз).
Для роста и развития растительных и животных клеток необходимо поступление в организм энергии, которая выделяется при клеточном дыхании.
Выполнение схожих функций обеспечено аналогичным строением цитоплазмы. Так, в обоих случаях в ее структуре имеются эндоплазматический ретикулум, рибосомы, митохондрии, комплекс Гольджи.
В то же время существует ряд отличий между клетками растительной и животной природы.
Они заключаются в следующих моментах:
§ 13. Одномембранные органоиды
Мембранные органоиды имеются только в клетках эукариот. Внутреннее содержимое одномембранных органоидов отделено от гиалоплазмы одной мембраной, а двумембранных — двумя. Эти мембраны имеют сходное с плазмалеммой строение. К одномембранным органоидам клетки относятся: эндоплазматическая сеть, комплекс Гольджи, лизосомы и вакуоли.
Эндоплазматическая сеть (ЭПС), *или эндоплазматический ретикулум (ЭПР)* — это замкнутая система, которая состоит из соединенных между собой уплощенных полостей — цистерн и разветвленных каналов. Цистерны и каналы ЭПС пронизывают гиалоплазму клетки. Они ограничены мембраной, переходящей в наружную мембрану ядра (рис. 13.1).
Различают два типа ЭПС — шероховатую *(гранулярную)* и гладкую *(агранулярную)*. Шероховатая ЭПС представлена преимущественно цистернами, а гладкая — каналами. Мембраны шероховатой и гладкой ЭПС непосредственно переходят друг в друга. С наружной поверхностью мембраны шероховатой ЭПС связаны многочисленные рибосомы, которые и придают ей характерную «шероховатость». На мембране гладкой ЭПС рибосомы отсутствуют.
*В рибосомах шероховатой ЭПС синтезируются экспортные белки. Так называют белки, которые в конечном итоге будут выведены из клетки и начнут функционировать за ее пределами. Кроме того, рибосомы шероховатой ЭПС синтезируют белки лизосом и мембранные белки. Далее экспортные и лизосомные белки поступают внутрь цистерн, где начинается их созревание — молекулы приобретают определенную пространственную конфигурацию. Мембранные белки, как правило, не проникают внутрь шероховатой ЭПС, а встраиваются в ее мембрану.*
*Синтез всех белков начинается в свободных рибосомах, не прикрепленных к мембране ЭПС или ядра. Однако у ряда белков в начале полипептидой цепи имеется так называемая сигнальная для шероховатой ЭПС последовательность аминокислот. Рибосома, вырабатывающая такой белок, прикрепляется к мембране ЭПС. Далее растущая молекула белка через специальный мембранный канал поступает внутрь ЭПС, где происходит отщепление сигнальной последовательности. После окончания синтеза белка рибосома отделяется от мембраны ЭПС и распадается на субъединицы, а вся белковая молекула оказывается внутри цистерны. Так осуществляется образование лизосомных и экспортных белков.
Первые стадии синтеза интегральных мембранных белков происходят аналогично: рибосома связывается с мембраной ЭПС, начальный участок белковой молекулы проходит через мембранный канал. Однако в цепи такого белка содержится особая последовательность аминокислот, которая препятствует дальнейшему пересечению мембраны. В результате после окончания синтеза белковая молекула оказывается встроенной в мембрану.
Рибосомы, которые синтезируют белки, не имеющие сигнальной для шероховатой ЭПС последовательности, остаются свободными (т. е. не связанными с мембраной). В свободных рибосомах образуются белки, которые будут функционировать непосредственно в гиалоплазме, либо транспортироваться в ядро, митохондрии или пластиды и выполнять свои функции там.*
На мембране гладкой ЭПС происходит синтез различных углеводов и липидов. *Кроме того, гладкая ЭПС обеспечивает обезвреживание токсичных веществ и является внутриклеточным депо ионов Ca2+.*
*В волокнах поперечнополосатых мышц гладкая ЭПС окружает миофибриллы и депонирует ионы Ca2+. Они поглощаются путем активного транспорта, при этом концентрация Ca2+ в цитоплазме уменьшается и происходит расслабление мышечного волокна. Поступление нервного импульса на мембрану волокна вызывает резкий выброс ионов Ca2+ из гладкой ЭПС, что, в свою очередь, приводит к сокращению миофибрилл.*
Большинство веществ, синтезированных в шероховатой и гладкой ЭПС, накапливается в цистернах и каналах этого органоида. Затем молекулы синтезированных соединений заключаются в небольшие пузырьки, которые формируются из мембраны эндоплазматической сети. Мембранные пузырьки, которые отделились от ЭПС, доставляют содержащиеся в них вещества в комплекс Гольджи.
*Шероховатая ЭПС лучше всего развита в клетках, специализирующихся на секреции белков. Примерами могут служить клетки желез желудка и кишечника, вырабатывающие пищеварительные ферменты, а также клетки гипофиза и поджелудочной железы, секретирующие гормоны белковой природы. Гладкая ЭПС особенно выражена в клетках, синтезирующих большое количество углеводов и липидов. Так, в клетках печени она обеспечивает синтез гликогена и холестерина, а в клетках половых желез и коры надпочечников — стероидных гормонов.*
§ 10. Клеточная теория. Общий план строения клетки
Клеточная теория. В первой половине XIX в. происходило углубление представлений о строении клетки, что связано с существенными улучшениями конструкции микроскопов. В клетках были обнаружены ядро и некоторые другие структуры. До этого считалось, что живыми являются клеточные стенки, а внутри клетки или пусты, или заполнены «питательным соком». В 1840-х гг. ученые пришли к пониманию того, что важнейшие процессы жизнедеятельности протекают именно внутри клеток, а не в клеточных стенках.
*В 1825 г. чешский анатом и физиолог Я. Пуркине открыл ядро в яйцеклетке курицы. Позже он пришел к выводу, что именно внутреннее содержимое клеток, а не их оболочки, представляет собой живое вещество. Пуркине и его ученики исследовали микроскопическое строение ряда тканей и органов млекопитающих и человека. Однако, сравнивая клетки животных с клетками растений, Пуркине все же не пришел к выводу об их сопоставимости и единстве происхождения.
Британский ботаник Р. Броун в 1831 г. ввел термин «ядро» и описал его как сферическое плотное внутриклеточное тельце. Он же высказал предположение о том, что ядро является постоянным компонентом растительной клетки.*
В 1838 г. немецкий ботаник М. Шлейден доказал, что различные органы растений состоят из клеток. Кроме того, ученый указал на значимость ядра для жизнедеятельности клетки.
Создателем клеточной теории стал немецкий зоолог Т. Шванн. Он установил, что ткани животных состоят из клеток, каждая из которых имеет ядро. Сопоставляя собственные наблюдения с трудами Шлейдена, Шванн пришел к выводу о том, что на микроскопическом уровне животные и растения устроены по единому плану. В 1839 г. была опубликована его книга «Микроскопические исследования о соответствии в структуре и росте животных и растений». В этой книге были выражены основные идеи клеточной теории: все организмы состоят из клеток, при этом клетки растений и животных сходны по строению и процессам жизнедеятельности. Создание клеточной теории было одним из величайших открытий в естествознании XIX в., наряду с эволюционной теорией и законом сохранения и превращения энергии.
*Главной ошибкой Шванна было высказанное вслед за Шлейденом мнение о том, что клетки растений и животных возникают из бесструктурного неклеточного вещества. Интересно, что именно этот ошибочный взгляд на способ образования клеток позволил Шванну прийти к выводу об их сходстве у растений и животных.*
В 1855 г. немецкий врач Р. Вирхов дополнил клеточную теорию. Он сформулировал принцип «Каждая клетка — от клетки», т. е. клетки образуются из других клеток в результате деления. *Вирхов также предположил, что в основе всех заболеваний лежит изменение структуры и функций клеток. Клеточная теория в толковании Вирхова стала общепринятой основой как биологии, так и медицины.*
В дальнейшем учение о клетке оказалось в центре внимания всей биологической науки и бурно развивалось. Для изучения клеток и их компонентов стали использовать разнообразные физические и биохимические методы. Это позволило понять сложность строения клеток и многообразие протекающих в них процессов.
Клеточная теория, главные положения которой были сформулированы в середине XIX в., является одной из основополагающих идей современной биологии. Она утверждает единство принципа строения и развития всех организмов, имеющих клеточное строение. Клеточная теория стала одной из предпосылок возникновения эволюционного учения, фундаментом для развития таких дисциплин, как гистология (наука о тканях), эмбриология (наука о зародышевом развитии организмов), физиология и др.
Современная клеточная теория включает следующие основные положения.
1. Клетка — элементарная структурно-функциональная единица живых организмов, обладающая всеми признаками и свойствами живого.
2. Клетки всех организмов сходны по химическому составу, строению и процессам жизнедеятельности.
3. Все клетки образуются только в результате деления исходных (материнских) клеток.
4. Клетки большинства многоклеточных организмов специализируются по функциям и образуют ткани. Из тканей состоят органы и системы органов.