Тетрада (генетика)

Тетрада (генетика)

Второй закон Менделя — закон расщепления

Итак, мы помним, что при скрещивании двух гомозиготных организмов всё потомство примет лишь один признак. Но что, если взять из этого потомства два гетерозиготных организма и скрестить их? Будет ли потомство единообразным?

Вернёмся к гороху. Каждый родитель с равной вероятностью передаст либо ген A, либо ген a. Тогда потомство разделится следующим образом:

  • AA — пурпурные цветки (25%);
  • aa — белые цветки (25%);
  • Aa — пурпурные цветки (50%).

Видно, что организмов с пурпурными цветками в три раза больше. Это явление расщепления. В этом и заключается второй закон Грегора Менделя: при скрещивании гетерозиготных организмов потомство расщепляется в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

Впрочем, существуют так называемые летальные гены. При их наличии происходит отклонение от второго закона. Например, потомство жёлтых мышей расщепляется в соотношении 2:1.

То же происходит и с лисицами платинового цвета. Дело в том, что если в генотипе этих (и некоторых других) организмов оба гена доминантные, то они просто погибают. В результате доминантный ген может проявляться только если организм гетерозиотен.

Закон чистоты гамет и его цитологическое обоснование

Возьмём жёлтый горох и зелёный горох, ген жёлтого цвета — доминантный, а зелёного — рецессивный. В гибриде будут содержаться оба этих гена (хотя мы увидим лишь проявление доминантного).

Известно, что от родителя к потомству гены переносятся с помощью гамет. Гамета — это половая клетка. В генотипе гибрида имеется два гена, выходит, в каждой гамете — а их две — находилось по одному гену. Слившись, они образовали генотип гибрида.

Если во втором поколении проявился рецессивный признак, характерный одному из родительских организмов, значит, выполнялись следующие условия:

  • наследственные факторы гибридов не изменялись;
  • каждая гамета содержала в себе один ген.

Второй пункт — закон чистоты гамет. Конечно, гена не два, их больше. Существует понятие аллельных генов. Они отвечают за один и тот же признак. Зная это понятие, можно сформулировать закон так: в гамету проникает по одному, случайно выбранному, гену из аллели.

Цитологическая основа данного правила: клетки, в которых находятся содержащие пары аллелей хромосомы со всей генетической информацией, делятся и образуют клетки, в которых есть лишь по одной аллели — гаплоидные клетки. В данном случае это гаметы.

Закономерности наследования признаков у человека

Несмотря на то, что изначально генетические принципы исследовались на примере растений, для животных и человека они также справедливы. Стоит отметить такие типы наследования:

  • Аутосомно-доминантный — наследование доминирующих признаков, которые локализуются посредством аутосом. При этом фенотип может быть как сильно выраженным, так и едва заметным. При данном типе наследования вероятность получения ребенком патологического аллеля от родителя составляет 50 %.
  • Аутосомно-рецессивный — наследование второстепенных признаков, соединенных с аутосомами. Заболевания проявляются посредством гомозигот, причем пораженными будут оба аллеля.
  • Доминантный Х-сцепленный тип подразумевает передачу доминантных признаков детерминированными генами. При этом у женщин заболевания встречаются в 2 раза чаще, чем у мужчин.
  • Рецессивный Х-сцепленный тип — наследование происходит по более слабому признаку. Заболевание или его отдельные признаки всегда проявляются у потомства мужского пола, а у женщин — только в гомозиготном состоянии.

Тетрадный анализ

Перед мейозом ДНК обоих наборов хромосом зиготы удваивается, так что хромосомы двойного набора теперь содержат по 2 хроматиды (то есть зигота имеет генетическую формулу 2n4c, где n — количество гаплоидных наборов хромосом, а c — количество ДНК). Ядро, которое содержит два набора таких хромосом, делится в две стадии, разделяясь на четыре новых ядра (2n4cn2cnc). Каждое из них имеет одинарный (гаплоидный) набор однохроматидных хромосом. После этого процесса каждое из четырёх новых ядер снова удваивает ДНК и делится митозом (n2c). В результате образуется аска с четырьмя парами спор.

Итак, каждая из аск (сумок) содержит 4 гаплоидные споры с удвоенным количеством ДНК, то есть они имеют генетическую формулу n2c. Следовательно, расщепление в асках (сумках) соответствует гаметическому расщеплению (после I деления мейоза, когда и происходит рекомбинация, предшественники половых клеток имеют генетическую формулу n2c, которая при последующем митотическом делении становится nc, так как каждая клетка отдаёт по одному комплекту ДНК дочерним клеткам).

По этой причине расщепление в тетрадах моногетерозиготы A/a соответствует 2A : 2а, а у дигетерозиготы AB/ab наблюдается 3 вышеописанных типа тетрад: родительский дитип 2АВ : 2ав, неродительский дитип 2Ав : 2аВ и тетратип 1АВ : 1Ав : 1аВ : 1ав. Частота появления каждого из этих типов тетрад даёт право делать выводы о сцеплении генов и центромер (сцеплённые участки рекомбинируют вместе). Кроме того, на основании того, что частота кроссинговера зависит от расстояния между генами, можно судить и о расстоянии между генами или генами и центромерами.

Тетрадный анализ помог установить, что кроссинговер происходит на стадии четырёх, а не двух хроматид (хотя теоретически этот вариант был возможен). Объектом исследований был выбран сумчатый гриб нейроспора густая (Neurospora crassa). Особенность нейроспоры в том, что аскоспоры располагаются в аске линейно, а направление расхождения хромосом совпадает с длинной осью аска. Четыре гаплоидных ядра после мейоза ещё раз делятся митозом, в результате в аске в один ряд располагаются 4 пары гаплоидных спор, и генотип каждой пары должен быть идентичен.

Если бы кроссинговер происходил на стадии двух хроматид, то при скрещивании АB : ab наблюдалось бы единственное линейное расположение Ab-Ab-Ab-aB-aB-aB. В действительности же обычно наблюдаются куда более сложные варианты расположений, например, AB-AB-Ab-Ab-aB-aB-ab-ab и Ab-Ab-AB-AB-aB-aB-ab-ab. Это связано с тем, какие именно хроматиды из четырёх вступили в рекомбинацию.

Технически, такие наблюдения осуществляют при помощи техники микроманипуляции, позволяющей изолировать под микроскопом каждую из четырех спор аска. После проращивания в подходящих условиях споры образуют клоны, что позволяет определить их фенотип, а следовательно, и генотип.

Скрещивание

Скрещивание
— получение потомства путем искусственного объединения генетического материала разных родителей (разных клеток) в одной клетке.

Генетическая запись скрещивания:

первая строка:
буква Р
(родители), генотип женского организма, знак скрещивания х, генотип мужского организма; под обозначениями генотипов могут быть указаны признаки организмов;

вторая строка:
буква G
(гаметы) и (под обозначениями генотипов, в кружочках) гаметы женской и мужской особей;

третья строка:
буква F k (потомки), генотипы потомков (под обозначениями генотипов могут быть указаны признаки организмов); к — номер поколения.

Гомозигота
— зигота, содержащая одинаковые
аллели одного гена — доминантные (АА, доминантная гомозигота
) или рецессивные (аа, рецессивная гомозигота
).

■ Гомозиготная особь образует один тип гамет и не дает расщепления при скрещивании.

Гетерозигота — зигота
, содержащая два разных аллеля одного гена (Аа
).

■ Гетерозиготная особь в потомстве дает расщепление по данному признаку. Образует несколько типов гамет.

Правило (гипотеза) чистоты гамет
. Так как каждая хромосома или хроматида может нести только один аллель данного гена, то при расхождении хромосом (при первом делении мейоза) или хроматид (при втором делении мейоза) вместе с ними в гаплоидные клетки гамет отходит лишь по одному из аллелей каждой аллельной пары.

Поэтому: любая гамета организма несет только по одному аллелю каждого гена, т.е. аллели в гаметах не перемешиваются.

Следствия правила чистоты гамет:

гомозиготный

организм образует только один тип гамет:

гетерозиготный по одной паре генов организм образует два типа гамет (из двух гомологичных хромосом зиготы в процессе мейоза одна хромосома — с геном А
— попадает в одну гамету, другая — с геном а
— в другую гамету):

Гибридизация
— процесс скрещивания двух организмов одного вида (внутривидовая гибридизация) или разных видов или родов (отдаленная гибридизация).

Гибрид
— организм, полученный путем скрещивания генетически разных организмов.

Моногибридное скрещивание
— скрещивание организмов, отличающихся друг от друга альтернативными вариантами только одного признака (одной парой аллелей).

Анализирующее скрещивание
— скрещивание изучаемого организма с организмом, имеющим рецессивный гомозиготный генотип (и образующим только один тип гамет с рецессивными аллелями). Позволяет установить генотип изучаемого организма. Применяется в селекции растений и животных.

Дигибридное скрещивание
— скрещивание организмов, отличающихся друг от друга альтернативными вариантами двух признаков (двумя парами аллелей).

Полигибридное скрещивание
— скрещивание организмов, отличающихся друг от друга альтернативными вариантами трех и более признаков.

Сцепленное наследование
— совместное наследование генов, локализованных в одной хромосоме; гены образуют группы сцепления.

Расщепление признаков
— проявляющееся среди потомства второго и последующих поколений определенное соотношение между количествами особей, характеризующихся альтернативными признаками исходных родительских форм.

■ Конкретные количественные соотношения

между числами особей, несущими признаки каждой из родительских форм, определяются тем, каковы родительские организмы по данным признакам — гомозиготные или гетерозиготные.

Взаимодействие генов

Некоторые признаки определяются не одним геном, а одновременным действием нескольких. В таких случаях, безусловно, наблюдается изменение и усложнение формул расщеплений и методов анализа. Гены, влияющие на развитие одного признака, называются взаимодействующими. Известно несколько видов такого взаимодействия генов: комплементарное, эпистатическое, полимерное.

Доминантные аллели обоих генов приводят к формированию нового проявления признака, взаимно дополняя друг друга (комплементируя). Если же в генотипе присутствуют лишь рецессивные аллели обоих генов, то признак не проявляется. Биохимический анализ позволяет дополнить эту схему. Окраска глаз у дрозофилы обуславливается двумя пигментами (ярко-красным и коричневым), каждый из которых образуется в отдельной цепи биосинтеза. Рецессивный аллель «b» у гомозигот прерывает синтез ярко-красного пигмента — у таких особей глаза имеют коричневую окраску, аллель «а» нарушает синтез коричневого пигмента — у гомозигот аа глаза имеют ярко-красную окраску, у особей «А-В-» имеется оба пигмента, обуславливая темно-красную окраску глаз, а у гомозигот по обоим генам «ааbb» красящих веществ в глазах нет вообще — глаза бесцветные (белые).

Взаимодействие генов (или взаимодействие неаллельных генов) приводит к расщеплениям дигенного типа. Помимо случая, рассмотренного выше, во втором поколении могут наблюдаться расщепления: 9:7, 9:6:1, 9:3:4, 12:3:1, 13:3, 15:1.

Первый закон Менделя — закон единообразия гибридов первого поколения

Рассмотрим опыт, проведённый Менделем. Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого — белые.

Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один.

На основе этих опытов учёный вывел свой первый закон, вот его формулировка: все гибриды в первом поколении всегда наследуют лишь один признак от родителей.

Обозначим ген, отвечающий за пурпурные цветки, как A, а за белые- a. Генотип одного родителя — AA (пурпурные), а второго — aa (белые). От первого родителя будет унаследован ген A, а от второго — a. Значит, генотип потомства всегда будет Aa. Ген, обозначенный заглавной буквой, называется доминантным, а строчной — рецессивным.

Если в генотипе организма содержатся два доминантных или два рецессивных гена, то его называют гомозиготным, а организм, содержащий разные гены — гетерозиготным. Если организм гетерозиготен, то рецессивный ген, обозначаемый прописной буквой, подавляется более сильным доминантным, в результате проявляется признак, за который отвечает доминантный. Значит, горох с генотипом Aa будет обладать пурпурными цветками.

Скрещивание двух гетерозиготных организмов с разными признаками — это моногибридное скрещивание.

Кодоминирование и неполное доминирование

Бывает такое, что доминантный ген не может подавить рецессивный. И тогда в организме проявляются оба родительских признака.

Такое явление можно наблюдать на примере камелии. Если в генотипе этого растения один ген отвечает за красные лепестки, а другой — за белые, то половина лепестков камелии станут красными, а остальные — белыми.

Такое явление называют кодоминированием.

Неполное доминирование — похожее явление, при котором появляется третий признак, нечто среднее между тем, что было у родителей. Например, цветок ночная красавица с генотипом, содержащим и белые, и красные лепестки, окрашивается в розовый.

Закон независимого наследования в дигибридном скрещивании

Дигибридным называется такое скрещивание, в котором исходные формы отличаются по двум признакам. По каждому из признаков родительские формы отличаются по одному гену (по признаку А — по гену А, по признаку В — по гену В). При скрещивании гибридов F1, полученных от дигибридного скрещивания, наблюдается расщепление по фенотипу: 9/16 А-В- : 3/16 А-bb: 3/ 16 ааВ- : 3/16 ааbb.

При этом признаки наследуются независимо друг от друга, и по каждому из них наблюдается расщепление 3/4: 1/4.

Это расщепление легко получается как комбинированное, сочетающее два моногибридных (во втором поколении каждого из которых наблюдается расщепление 3:1), при этом за каждый признак отвечает один ген:

(3/4 А- + 1/4 аа) х (3/4 В- + 1/4 bb) = 9/16 А-В- + 3/16 А-bb + 3/16 ааВ- + 1/16 ааbb.

В анализирующем скрещивании аналогично получается расщепление 1:1:1:1.

Выполнение этого закона определяется независимым характером расхождения хромосом негомологичных пар в мейозе, а также тем, что гены А и В расположены в разных (негомологичных) хромосомах. Независимое расхождение хромосом в мейозе приводит к возникновению новых сочетаний генов и признаков, которых не было у родительских организмов, — в потомстве появляются рекомбинанты (особи, несущие перекомбинированные сочетания признаков).

Так же получаются и расщепления в полигибридных скрещиваниях (скрещивания, в которых родительские формы отличаются по нескольким или многим признакам).

Все законы наследования Г. Менделя иллюстрируют постулированную им точку зрения о дискретном характере наследования: наследуется не сам признак, а определяющие его материальные факторы. Этими факторами являются гены.

Третий закон Менделя — закон независимого наследования

Выполнение третьего закона возможно при дигибридном скрещивании, когда исследуется не один признак, а несколько. В случае с горохом это, например, цвет и гладкость семян.

Гены, отвечающие за цвет семян, обозначим как A (жёлтый) и a (зелёный); за гладкость — B (гладкие) и b (морщинистые). Попробуем провести дигибридное скрещивание организмов с разными признаками.

Первый закон не нарушается при таком скрещивании, то есть гибриды будут одинаковы и по генотипу (AaBb), и по фенотипу (с жёлтыми гладкими семенами).

Каким же будет расщепление во втором поколении? Чтобы это узнать, необходимо выяснить, какие гаметы могут выделить родительские организмы. Очевидно, это AB, Ab, aB и ab. После этого строится схема, называемая решёткой Пиннета.

По горизонтали перечисляются все гаметы, которые может выделить один организм, а по вертикали — другой. Внутри решётки записывается генотип организма, который появился бы при данных гаметах.

AB Ab aB ab
AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb

Если изучить таблицу, можно прийти к выводу, что расщепление гибридов второго поколения по фенотипу происходит в соотношении 9:3:3:1. Это понял и Мендель, проведя несколько экспериментов.

Помимо этого он также пришёл к выводу, что то, какой из генов одной аллели (Aa) попадёт в гамету, не зависит от другой аллели (Bb), то есть существует только независимое наследование признаков. Это и есть его третий закон, называемый законом независимого наследования.

Третий закон Менделя

Третий закон Менделя
(закон независимого наследования признаков

) описывает дигибридное скрещивание особей: при скрещивании гомозиготных организмов, отличающихся по двум или нескольким парам признаков, во втором поколении наблюдается независимое наследование генов разных аллельных пар и соответствующих им признаков.

Т.е. каждая пара аллельных генов (и соответствующих им альтернативных признаков) наследуется независимо друг от друга (другая формулировка 3-го закона Менделя

).

❖ Определение возможных генотипов и вероятностей их появления у особей второго поколения: сначала определяется генотип первого поколения
и тип его гамет Gf1
(см. таблицу),

после чего генотипы особей и вероятности их появления определяются с помощью решетки Пеннета

.

Решетка Пеннета
— таблица, с помощью которой изображают и анализируют расщепление независимо наследуемых признаков. По горизонтали в верхней строке этой решетки записываются женские гаметы, по вертикали в левом столбце — мужские гаметы, на пересечениях строк и столбцов — генотипы дочерних особей.

Пример:
скрещивание гомозиготной

особи гороха, характеризующейся двумя доминантными

признаками — желтой окраской и гладкой формой семян, — с гомозиготной

особью гороха, имеющей два альтернативных рецессивных

признака — зеленую окраску и морщинистую форму семян.

Так как, согласно третьему закону Менделя, расщепление по каждому признаку идет независимо:
по цвету (во втором поколении) в соотношении 3: 1 (см. второй закон Менделя), по форме — также в соотношении 3: 1, то расщепление по фенотипу, т.е. по комбинации признаков, наблюдается в соотношении (3: 1) 2 = 9: 3: 3: 1 (девять частей из 16 составляют желтые гладкие семена, три части — желтые морщинистые, еще три части — зеленые гладкие и одну часть — зеленые морщинистые семена).

Из данных решетки Пеннета следует, что всего при дигибридном скрещивании гомозиготных особей (в частности, гороха) у особей второго поколения возможны девять различных генотипов (генотипических классов)
, которые распадаются на четыре фенотипических класса. Потомки, доминантные по двум признакам (желтые гладкие семена гороха) имеют один из следующих генотипов (в скобках указана вероятность появления данного генотипа): ААВВ
(1/16), ААВв
(2/16), АаВВ
(2/16) или АаВв
(4/16); доминантные по первому и рецессивные по второму признаку (желтые морщинистые семена) — ААвв
(1/16) или Аавв
(2/16); рецессивные по первому и доминантные по второму признаку (зеленые гладкие семена) — ааВВ
(1/16) или ааВв
(2/16); рецессивные по обоим признакам — генотип аавв (1/16) (зеленые морщинистые семена).

❖ Расщепление по генотипу имеет вид:

■ при дигибридном

скрещивании: (1:2:1) 2 ;
■ при полигибридном
скрещивании (1:2:1) n
, где n — число расщепляющихся пар аллелей.

❖ Расщепление по фенотипу имеет вид:

■ при дигибридном

скрещивании: (3: 1) 2 = 9: 3: 1;
■ при полигибридном

скрещивании (3: 1) n .

Следствия третьего закона Менделя:

■ если анализ расщепления по двум признакам дает по фенотипу соотношение, близкое к 9: 3: 3: 1, то исходные родительские особи дигетерозиготны по этим признакам;

■ в общем случае каждый новый ген увеличивает число типов различных гамет в два раза, а число генотипов — в три раза. Следовательно, особь, гетерозиготная по п парам генов, может произвести 2” типов гамет и 3” различных генотипов;

■ число различающихся классов фенотипов равно числу различных типов гамет при наличии доминирования и числу различных генотипов в отсутствие доминирования.

Замечания:

■ третий закон Менделя, т.е. независимое комбинирование признаков, выполняется только при условии, что аллельные гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом;

■ он не объясняет закономерности наследования генов, находящихся совместно в одной и той же хромосоме;

❖ Вычисление частоты определенного генотипа
в потомстве родителей, отличающихся определенным числом независимо наследуемых генов:

■ сначала вычисляется вероятность появления соответствующего генотипа отдельно для каждой пары генов;

■ искомая частота равна произведению этих вероятностей. Пример: вычислить частоту генотипа АаЬЬСс в потомстве от скрещивания АаВbсс x АаВbСс. Вероятность появления генотипа Аа в потомстве от скрещивания Аа x Аа равна 1/2; вероятность появления генотипа bb в потомстве от скрещивания Вb х Вb равна 1/4; вероятность появления генотипа Сс в потомстве от скрещивания Сс x сс равна 1/2. Следовательно, вероятность появления генотипа АаbbСс составляет (1/2) х (1/4) х (1/2) = 1/16.

Второй закон Менделя

Второй закон Менделя
(закон расщепления) описывает моно-гибридное скрещивание гетерозиготных особей: при скрещивании между собой гибридов первого поколения (т.е. гетерозиготных особей), отличающихся по одному из пары альтернативных признаков, во втором поколении наблюдается расщепление в соотношении 3: 1 по фенотипу и 1: 2: 1 по генотипу.

Расщепление по фенотипу:
три части потомков второго поколения с доминантным

признаком и одна часть — с рецессивным

.

Расщепление по генотипу:
одна часть потомков — доминантные гомозиготы (АА)
, две части потомков — гетерозиготы (Аа)
и одна часть — рецессивные гомозиготы (аа)
.

Следствия второго закона Менделя:

■ если потомство родительских особей дает расщепление по фенотипу, близкое к 3: 1, то исходные родительские особи по данным аллелям гетерозиготны

;

анализирующее скрещивание:

если потомство родительских особей дает расщепление по фенотипу, близкое к 1: 1, то одна из родительских особей была гетерозиготной, а другая — гомозиготной и несла пару рецессивных аллелей.

Заключение

Мендель сформулировал и на практике доказал основные закономерности наследования признаков. Описание их приведено на примере растений и слегка упрощено. Но на практике оно является справедливым для всех живых организмов.

Раздел ЕГЭ: 3.5.
Закономерности наследственности, их цитологические основы. Закономерности наследования, установленные Г. Менделем, их цитологические основы (моно-и дигибридное скрещивание)…

Мендель
, проводя опыты по скрещиванию различных сортов гороха, установил ряд законов наследования, положивших начало генетике. Он разработал гибридно-логический метод анализа наследования

признаков организмами. Этот метод предусматривает скрещивание особей с альтернативными признаками; анализ исследованных признаков у гибридов без учета остальных; количественный учет гибридов.

Проводя моногибридное скрещивание (скрещивание по одной паре альтернативных признаков), Мендель установил закон единообразия
первого поколения.

Основные положения

гибридологического метода

  • Для скрещивания берутся организмы, предки которых в ряду поколений не давали расщепления по избранным признакам, то есть чистые линии.
  • Организмы отличаются по одной или двум парам альтернативных признаков.
  • Проводится индивидуальный анализ потомства каждого скрещивания.
  • Используется статистическая обработка результатов.


Первый
закон Г. Менделя

При скрещивании двух гомозиготных особей, отличающихся друг от друга одной парой альтернативных признаков, всё потомство в первом поколении единообразно как по фенотипу, так и по генотипу.


Второй

закон
Г.
Менделя

При скрещивании гибридов первого поколения (двух гетерозиготных особей) во втором происходит расщепление 3: 1. Наряду с доминантным появляется и рецессивный признак.

Анализирующее скрещивание
— скрещивание, при котором особь с неизвестным генотипом, который нужно установить (АА или Аа), скрещивается с рецессивной гомозиготой (аа). Если всё потомство от итого скрещивания будет однообразным, исследуемый организм имеет генотип АА. Если в потомстве Судет наблюдаться расщепление по фенотипу 1: 1, исследуемый организм — гетерозиготный Аа.


Третий

закон
Г.
Менделя

При скрещивании гомозиготных особей, отличающихся двумя парами альтернативных признаков или более, каждый признак наследуется независимо от других, комбинируясь во всех возможных сочетаниях.

В опытах Мендель использовал разные способы скрещивания

: моногибридное, дигибридное и полигибридное
. При последнем скрещивании особи отличаются более чем по двум парам признаков. Во всех случаях соблюдается закон единообразия первого поколения, закон расщепления признаков во втором поколении и закон независимого наследования.

Закон независимого наследования:
каждая пара признаков наследуется независимо друг от друга. В потомстве идет расщепление по фенотипу 3:1 по каждой паре признаков. Закон независимого наследования справедлив лишь в том случае, если гены рассматриваемых пар признаков лежат в различных парах гомологичных хромосом. Гомологичные хромосомы сходны по форме, размерам и группам сцепления генов.

Поведение любых пар негомологичных хромосом в мейозе не зависит друг от друга. Расхождение: их к полюсам клетки
носит случайный характер. Независимое наследование имеет, большое значение для эволюции; так как является источником комбинативной наследственности.

Это конспект по биологии для 10-11 классов по теме «Закономерности наследственности. Законы Моргана»
. Выберите дальнейшее действие:

Понравилась статья? Поделиться с друзьями:
Лесные поляны
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: