Фотосинтез и урожай

Фотосинтез растений в теплицах

Световая фаза фотосинтеза

Чтобы лучше понять, что происходит во время фотосинтеза, разберём фазы фотосинтеза. Световая фаза фотосинтеза включает в себя фотохимические и фотофизические процессы, и может быть поделена на три этапа:

  1. Фаза поглощения — энергия света улавливается при помощи светособирающих комплексов, переходит в энергию электронного возбуждения пигментов, передаётся в реакционный центр фотосистем I и II. 
  2. Фаза реакционных центров — энергия электронного возбуждения пигментов светособирающих комплексов используется для активации реакционных центров фотосистем. В реакционном центре электрон от возбуждённого хлорофилла передаётся другим компонентам электрон-транспортной цепи, пигмент после отдачи электрона переходит в окисленное состояние и становится способным, в свою очередь, отнимать электроны у других веществ. Именно в этом процессе происходит преобразование физической формы энергии в химическую.
  3. Фаза электрон-транспортной цепи — электроны переносятся по цепи переносчиков, образуются АТФ, НАДФН, O2. Необходимо, чтобы каждый переносчик электрон-транспортной цепи поочерёдно восстанавливался и окислялся, обеспечивая таким образом перенос энергии электронов. Любой этап переноса электрона сопровождается высвобождением или поглощением энергии. Часть энергии теряется. На некоторых участках электрон-транспортной цепи перенос электрона сопряжён с переносом протона.

Для того чтобы понять, что происходит во время фазы фотосинтеза, рассмотрим эти процессы подробнее. Кванты света улавливаются светособирающими комплексами фотосистемы I — молекула хлорофилла в составе светособирающего комплекса переходит в возбуждённое состояние, и энергия передаётся в реакционный центр фотосистемы I. Происходит возбуждение молекул хлорофилла фотосистемы I,   отщепляется электрон. Пройдя по цепочке внутренних компонентов фотосистемы I и внешних переносчиков, электрон в конце концов попадает к НАДФ+ — образуется восстановитель НАДФН. Получается, что хлорофилл фотосистемы I отдал электрон и приобрёл положительный заряд, и для дальнейшего функционирования необходимо восстановить нейтральность молекулы, получить электрон, чтобы закрыть «дырку». Этот электрон приходит от фотосистемы II.

На светособирающие комплексы фотосистемы II попадают кванты света — происходит возбуждение молекулы хлорофилла фотосистемы II, молекула хлорофилла отдаёт электрон и переходит в окисленное состояние. Нехватку электрона хлорофилл восполняет благодаря фотолизу воды, при этом образуется протоны H+, а также важный побочный продукт фотосинтеза — кислород. По цепи переносчиков электрон от хлорофилла фотосистемы II попадает к хлорофиллу реакционного центра фотосистемы I и восстанавливает его. Теперь этот хлорофилл может снова поглощать энергию кванта света и отдавать электрон в электрон-транспортную цепь.

Протоны, попадающие во внутритилакоидное пространство, используются для синтеза АТФ. С помощью фермента АТФ-синтазы за счёт градиента протонов образуется АТФ из АДФ и фосфата. Под градиентом понимают неравномерное распределение: во внутритилакоидном пространстве H+ больше, в строме — меньше. Поэтому частицы стремятся проникнуть в строму, переходят в неё через АТФ-синтазу, а в процессе пути сквозь белковый комплекс отдают ему часть энергии, которая и используется для синтеза АТФ. 

Больше энергии

Пока ученые даже не знают точно всех особенностей использования солнечной энергии растениями. На нынешнем этапе исследования только подтверждено, что более высокая скорость фотосинтеза приводит к увеличению листьев и может становиться причиной развития более длинных и толстых корней или более обильного цветения.

Чтобы расширить свои знания о процессе фотосинтеза, исследователи университета Вагенингена в настоящее время работают над генетическими вариациями проса, томатов и кукурузы. Надо сказать, что уже начальный этап наблюдений значительно увеличил круг возможных представлений.

Сложилось, например, отдельное направление исследований: выявление закономерностей реакции растений на свет. Наблюдения показали, что в случае обилия солнечного света, немалая его часть не используется растениями для фотосинтеза, а излучается во внешнюю среду в виде тепла.  Этот процесс носит название «нефотохимическое тушение». И он вполне полезный, — поскольку предотвращает повреждение белков фотосинтеза солнечным светом

Но, замечено, что в частично пасмурные дни растения склонны проявлять осторожность и использовать эту свою способность для снижения скорости фотосинтеза. В итоге процесс фотосинтеза становится гораздо менее эффективным, чем мог бы быть

Как именно работает этот механизм, какие белки задействованы и куда уходит энергия? На эти вопросы ученым еще предстоит ответить.

Темновая фаза фотосинтеза

Что образуется при фотосинтезе в темновую фазу? В строме хлоропластов с помощью энергии АТФ и восстановителя НАДФН, полученных в световую фазу, образуются простые сахара, из которых в ходе других процессов образуется крахмал. Ферментативные процессы не нуждаются в наличии света. Важнейший процесс, происходящий в темновую фазу фотосинтеза, — фиксация углекислого газа воздуха. Синтез и превращения сахаров в хлоропластах имеют циклический характер и носят название цикл Кальвина.

В нём можно выделить три этапа:

  1. Фаза карбоксилирования (введение CO2 в цикл).
  2. Фаза восстановления (используются АТФ и НАДФН, полученные в световую фазу).
  3. Фаза регенерации (превращения сахаров).

В строме хлоропластов находится производное простого пятиуглеродного сахара рибозы. С помощью особого фермента (Рубиско) к производному рибозы присоединяется CO2 (реакция карбоксилирования) — образуется неустойчивое шестиуглеродное соединение, которое быстро распадается на две трехуглеродные молекулы. Дальше, с затратой АТФ и НАДФН, полученных в ходе световых процессов, трехуглеродное соединение модифицируется — образуется восстановленное соединение с атомом фосфора и альдегидной группой в составе. Теперь перед клеткой стоит проблема: необходимо получить шестиуглеродное соединение — глюкозу для синтеза крахмала, а также пятиуглеродное — производное рибозы для того, чтобы эти процессы могли начаться заново. Для решения этих проблем в фазу регенерации из полученных ранее трехуглеродных соединений под действием ферментов образуются четырёх-, пяти-, шести- и семиуглеродные сахара. Из шестиуглеродной молекулы образуется глюкоза, из которой синтезируется крахмал. Из пятиуглеродной молекулы образуется производное рибозы и цикл замыкается. Остальные сахара также используются клеткой в других биохимических процессах.

Отдельно стоит сказать про крайне важный фермент первой фазы цикла Кальвина — рибулозо-1,5-дифосфаткарбоксилазу (Рубиско). Это сложный фермент, состоящий из 16 субъединиц, с молекулярной массой в 8 раз больше, чем у гемоглобина. Является одним из важнейших ферментов в природе, поскольку играет центральную роль в основном механизме поступления неорганического углерода (из CO2) в биологический круговорот. Содержание Рубиско в листьях растений очень велико, он считается самым распространённым ферментом на Земле. 

Отбирать лучшие

В России накоплен значительный опыт исследований фотосинтеза и его роли в повышении урожайности культур. Однако, российские исследователи считают, что зависимость между фотосинтезом и общей продуктивностью растительного организма и урожаем, далеко не такая простая. Вопрос о связи между фотосинтезом и урожаем растений изучал профессор А. А. Ничипорович. Основной задачей разработок в области фотосинтеза, по его мнению, является сохранение и поддержание на более высоком уровне фотосинтетической деятельности естественной растительности, максимальное повышение фотосинтетической продуктивности культурных растений.

При этом на практике важную роль играет селекционный отбор сортов сельскохозяйственных растений, характеризующихся более высокой интенсивностью световых реакций. В качестве практических мер более эффективного использования солнечной энергии предлагалось располагать растения на оптимальном расстоянии друг от друга. Ученые подчеркивали, что в изреженных посевах значительная часть света пропадет зря, а вот в загущенных растения затеняют друг друга, их стебли становятся длинными и ломкими, легко полегающими от дождя и ветра. В том и другом случае происходило снижение урожая.

Российские, голландские, американские исследователи продолжают работать над увеличением активности фотосинтетического аппарата растений. Исследователи уверены, что этот метод позволит уже в ближайшие годы не только повысить урожайность, но и выращивать безопасные и качественные зерно, овощи, фрукты и зелень. 

Владимир Францкевич

При подготовке статьи использованы данные wur.eu

Изменить потоки света

Нидерландская организация по научным исследованиям с недавнего времени также финансирует исследования нефотохимического тушения, проводимые под руководством профессора Аартса.  Организация недавно одобрила сотрудничество этой группы ученых в своей работе с коллегами из университетов Утрехта, Амстердама и США. К исследованиям буду привлечены и селекционные компании с целью изучения вопроса реакции растений на изменение условий освещения. Предстоит выявить, какие гены ответственны за восприятие растениями освещения и есть ли в этом отношении какие-либо генетические вариации. После этого участники проекта должны будут определить, как эти гены влияют на реакцию растений на различные изменения внешних условий и регулируют функцию нефотохимического тушения, не повреждая растения.

Генетическая изменчивость

Ученые обратили серьезное внимание на это явление около десяти лет тому назад. Они не только убеждались, что различные виды растений по-разному относятся к фотосинтезу, но и видели, что отдельные растения одного и того же вида отличаются друг от друга в этом отношении

В дальнейшем, используя естественные генетические вариации, для них становилось возможным существенно улучшить процесс фотосинтеза.

Профессор Аартс и его коллеги также изучали кресс-салат (Arabidopsis thaliana). Ученым из Вагенингена удалось заменить хлоропласт одного растения кресс-салата другим без каких-либо изменений генетического материала хромосом. Благодаря этому новому методу, исследователи могли сравнивать оригинальные растения с растениями, имеющими «новые» хлоропласты. Некоторые из «обновленных» сочетаний хлоропластов, как оказалось, формируют растения с улучшенными показателями роста по сравнению с исходными природными свойствами.

Такое новаторское понимание сущности природных процессов позволяет селекционерам уже сегодня выводить культуры, обеспечивающие более высокие урожаи. Ученые-экспериментаторы уверены, что смогут в будущем вывести растения, способные использовать до полутора процентов доступного им солнечного света вместо нынешних полпроцента.

Что такое фотосинтез

Фотосинтез — процесс, при котором в клетках, содержащих хлорофилл, под действием энергии света образуются органические вещества из неорганических. При фотосинтезе растение поглощает углекислый газ и воду, синтезирует органические вещества и выделяет кислород, как побочный продукт фотосинтеза.

Процессы фотосинтеза идут в тканях, содержащих хлоропласты, — преимущественно, в листе, на который приходится большая часть процессов фотосинтеза. Такая ткань называется хлоренхима, или мезофилл. 

Строение хлоропластов

Чтобы понять, что происходит в растении при фотосинтезе, изучим подробнее хлоропласты. Хлоропласты — это особые пластиды растительных клеток, в которых происходит фотосинтез. Основные элементы структурной организации хлоропластов высших растений представлены на рис.1.

Хлоропласт — это двумембранный органоид. Внешняя мембрана проницаема для большинства органических и неорганических соединений. Она содержит специальные транспортные белки, благодаря которым нужные для работы хлоропласта пептиды и другие вещества попадают в него из цитоплазмы. Внутренняя мембрана обладает избирательной проницаемостью и способна контролировать, какие именно вещества попадут во внутреннее пространство хлоропласта.

Для хлоропластов характерна сложная система внутренних мембран, позволяющая пространственно организовать фотосинтетический аппарат, упорядочить и разделить реакции фотосинтеза, несовместимые между собой, и их продукты. Мембраны образуют тилакоиды, которые, в свою очередь, собираются в «стопки» — граны. Пространство внутри тилакоидов называется внутритилакоидным пространством, или люменом. 

Внутреннее пространство хлоропласта между гранами заполняет строма — гидрофильный слабоструктурированный матрикс. В строме содержатся необходимые для реакций синтеза сахаров ферменты, а также рибосомы, кольцевая молекула ДНК, крахмальные зёрна.

Значение фотосинтеза

В процессе фотосинтеза энергия света заключается в энергию химических связей органических веществ. Поэтому фотосинтез служит первичным источником почти всей энергии, используемой живыми организмами в процессе жизнедеятельности. Практически все живые организмы, за исключением хемосинтетиков, так или иначе пользуются теми продуктами, что выделяются при фотосинтезе.

За счёт фотосинтеза сформировалась и поддерживается пригодная для дыхания атмосфера с высоким содержанием кислорода. 

Фиксация углекислого газа в ходе фотосинтеза служит главным местом входа неорганического углерода в биогеохимический цикл. Также ассимиляция CO2 препятствует перегреву Земли, предотвращая парниковый эффект.

Понравилась статья? Поделиться с друзьями:
Лесные поляны
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: