Угол естественного откоса
При истечении гранулированного продукта через небольшое отверстие на ровную горизонтальную поверхность он будет накапливаться в виде конуса. Угол между горизонталью и образующей этого конуса называют углом естественного откоса. Каждый продукт имеет свой угол естественного откоса, например, пшеница — 25°, овес — 27°, кукуруза — 27° и ячмень — 28°.
Угол естественного откоса — полезный показатель способности продукта к истечению; обычно чем меньше угол естественного откоса, тем легче истечение продукта. Необходимо учитывать, что, хотя угол естественного откоса не является основным свойством сыпучего продукта с точки зрения его способности к истечению, он служит характеристикой продукта, используемой при проектировании системы хранения
Можно принимать во внимание следующие величины угла естественного откоса (град):
Практика показывает, что при заполнении силоса на угол естественного откоса также влияют высота падения материала, скорость заполнения и производительность заполнения. Угол естественного откоса определенного продукта приблизительно равен минимальному углу внутреннего трения этого продукта.
Строение масличных культур
Семена масличных культур резко отличаются от семян злаковых и зернобобовых культур. Так, семена подсолнечника состоят их ядра, покрытого семенной оболочкой, и все это заключено в лузгу. Между семенной оболочкой и лузгой имеется достаточно большое воздушное пространство. Многочисленные поры в лузге, семенной оболочке и ядре подсолнечника обеспечивают быстрое его обезвоживание.
Воздушная же прослойка является своеобразным термоизолятором и замедляет прогрев ядра при сушке. Химический состав зерна сложен. Он состоит из белков, углеводов, жиров минеральных веществ, клетчатки и воды. Другой отличительной особенностью зерна является неравномерное распределение химических веществ в теле зерновки.
Теплофизические свойства зерна
Термоустойчивость – способность зерна к сохранению в процессе сушки семенных, продовольственных и других качеств.
Например, при определенных тепловых режимах белки свертываются (денатурируются), что приводит к потери их способности к набуханию. Как следствие резко ухудшаются технологические свойства зерна при помоле, приготовлении теста, резко снижается способность семян к прорастанию. Для пшеницы это характерно при температуре выше 50°С.
При температуре выше 60°С заметно ухудшается качество крахмала. Происходит его частичный распад с образованием декстринов, что приводит к понижению качества муки и снижению всхожести семян.
Жиры более устойчивы к нагреву, но при температуре выше 70°С и они подвергаются частичному разложению.
Теплопроводность – способность тел проводить тепло. Характеризуется коэффициентом теплопроводности.
Температуропроводность связана со скоростью изменения температуры в зерновой массе и характеризуется коэффициентом температуропроводности (потенциалопроводности).
Зерновая масса имеет низкую теплопроводность и температуропроводность. Это обусловлено ее органическим составом и наличием воздуха в межзерновых пространствах. Большая теплоинерционность зерновой массы, медленные естественное охлаждение и прогревание зерновой массы имеют как положительное, так и отрицательное значение.
С теплофизическими свойствами зерновой массы тесно связано явление термовлагопроводности – направленное перемещение влаги в зерновой массе, обусловленное градиентом температуры. Влага из зоны с повышенной температурой вместе с потоком тепла перемещается в менее нагретые участки, где и конденсируется. Это наблюдается, например, при осыпании теплой зерновой массы на асфальтированный или бетонный пол.
Теплоемкость определяется количеством тепла, необходимого для повышения температуры 1 кг зерна на 1°С.
При повышении влажности теплоемкость материала увеличивается, поскольку теплоемкость воды почти втрое превышает теплоемкость сухого вещества зерна, и для нагревания той же зерновой массы требуется значительно больший расход энергии.
Самосортирование
Всякое перемещение зерновой массы сопровождается ее самосортированием, т. е. неравномерным расслоением входящих в нее компонентов по отдельным участкам насыпи.
Самосортирование происходит по удельной массе, а при свободном падении самосортированию способствует и парусность – сопротивление, оказываемое воздухом перемещению каждой отдельной частицы.
При загрузке силосов в результате самосортирования у стен скапливаются главным образом мелкие и щуплые зерна, легкие примеси, пыль и микроорганизмы. Влажность этих участков обычно выше средней влажности всей партии зерна, поэтому в них легче развиваются микроорганизмы и клещи. В центральной части силоса размещаются наиболее крупные, выполненные зерна и минеральные примеси, имеющие большую удельную массу.
При загрузке складов картина аналогичная. Выпуск зерновой массы также сопровождается ее значительным самосортированием. В результате отдельные части партии, выпущенные из силоса в различное время, могут быть резко разнородными по качеству.
Характер самосортирования при истечении из силоса зависит от характера истечения, который, в свою очередь, обусловлен формой силоса, отношением его высоты к поперечному сечению и местоположением выпускного отверстия. С. Г. Герасимов установил три случая истечения: нормальное, асимметричное и симметричное.
При нормальном истечении, в первую очередь, движется вертикальный слой зерна над выпускным отверстием. Постепенно в этот слой втягиваются верхние боковые слон (в силосах с симметрично расположенными загрузочным и выпускным отверстиями с относительно большим диаметром).
Асимметричный характер истечения наблюдается в силосах с большим диаметром, но при несимметричном расположении загрузочного и выпускного отверстий.
Симметричное истечение наблюдается в узких силосах. Оно характеризуется одновременным движением всей зерновой массы с несколько более быстрым движением центрального столба. Когда в силосе остается примерно половина зерна, характер истечения становится нормальным.
Таким образом, в результате самосортирования в зерновой массе, засыпанной на хранение, нарушается ее однородность, и создаются условия, способствующие развитию различных физиологических процессов, приводящих к частичной или полной порче зерна. В случае недостаточного наблюдения возможно широкое распространение этих активных в физиологическом отношении очагов, приводящих к общему самосогреванию.
Скважистость. Скважистость S есть отношение объема, занятого промежутками (скважинами) между твердыми частицами зерновой массы, к общему объему, занятому зерновой массой.
Плотность и объемная плотность
Знание объемной плотности существенно для определения нескольких важных показателей при проектировании системы хранения. Плотность гранулированного продукта представляет собой плотность, определенную без учета влияния любого сжатия продукта. Это положение имеет место, например, при плотной укладке гранулированного продукта в небольшом контейнере. Очевидно, что объемная плотность зависит от состояния материала, т. е. плотности частиц, формы частиц и от укладки или расположения частиц относительно друг друга. Однако со временем в результате переориентации или оседания воздух выходит из сыпучей массы, уменьшается объем, занимаемый данной массой, и увеличивается объемная плотность. Ее величина может быть на 20 % больше, чем обычная плотность.
Для определения объемной плотности известное количество продукта осторожно насыпают в мерный цилиндр и измеряют объем. Это будет объемная плотность сыпучего продукта в разрыхленном состоянии
Если постучать основанием цилиндра по столу 12 раз, то можно получить объемную плотность осевшей сыпучей массы путем деления массы образца на новый объем. Увеличение плотности укладки продукта обычно снижает способность продукта к истечению. При проектировании силосов необходимо учитывать эту повышенную объемную плотность; «средняя плотность» представляет собой величину между максимальной плотностью в нижнем слое и минимальной плотностью в верхнем слое.
Характер истечения
Идеальный гранулированный сыпучий продукт состоит из круглых или многоугольных, взаимно не связанных частиц, которые перемещаются под влиянием силы тяжести. Этот процесс называют характером истечения продукта.
Наиболее показательным методом иллюстрации этого гравитационного потока является использование прозрачного бункера, в который засыпают различные окрашенные горизонтальные слои одинакового продукта.
Продукты с отличной сыпучестью характеризуются как легкосыпучие, и к ним относятся классические виды зерна — пшеница, кукуруза, семена сои и ячмень.
Сыпучие продукты с менее благоприятным характером истечения называют трудносыпучими; к ним относятся такие, как тапиока, соевый шрот, копра и различные гранулированные сыпучие продукты.
У продуктов, обладающих хорошей сыпучестью, силы притяжения входящих в их состав компонентов незначительны, поэтому сыпучую массу можно легко побуждать к истечению под действием силы тяжести, даже если она была подвергнута уплотнению. При истечении такие материалы разделяются на отдельные частицы. В общем, продукты, обладающие хорошей сыпучестью, представляют мало проблем, связанных с выбором и проектированием разгрузочной системы. У трудносыпучих продуктов силы сцепления между частицами достаточно высоки и препятствуют свободному истечению; при истечении таких продуктов образуются комки. Это сопротивление истечению может привести к многочисленным проблемам, например, проблеме загрузки, закупорки самотеков, сводообразования. Следовательно, свойства истечения продуктов определяют тип системы транспортировки и ее компонентов.
Жизнедеятельность зерна
Каждый организм для поддержания жизни нуждается в систематическом притоке энергии.
У всех высших растений и многих микроорганизмов энергия освобождается в результате диссимиляции органических веществ, главным образом сахаров.
При хранении зерна и семян в них наблюдаются два вида диссимиляции, конечный результат которой может быть выражен следующими уравнениями, получившими название уравнений дыхания:
С6Н12О6 + 6О2 = 6С02 + б Н2О + энергия, (1.4)
(гексоза)
С6Н12О6 = 2СО2 + 2С2Н5ОН + энергия (1.5)
(гексоза)
Уравнение (1. 4) характеризует аэробное дыхание (окисление сахароз). Уравнение (1. 5) – анаэробное (уравнение спиртового брожения).
При достаточном доступе воздухё в зерне и семенах преобладает процесс аэробного дыхания. Если же не обновлять воздух в межзерновых пространствах, в них накапливается выделяемый при дыхании углекислый газ. Клетки зерен и другие организмы, способные к анаэробному дыханию, вынуждены переходить на этот вид дыхания.
Анаэробное дыхание в свою очередь приводит к образованию этилового спирта, угнетающе действующего на жизненные функции клеток зерна и приводящего к потере его жизнеспособности. Отсюда вывод: хранить семена необходимо только с доступом воздуха.
- потеря в массе сухих веществ зерна;
- увеличение гигроскопической влаги в зерне и повышение относительной влажности воздуха межзерновых пространств;
- изменение состава воздуха межзерновых пространств;
- образование тепла в зерновой массе.
При хранении зерна, особенно продовольственного и фуражного назначения, большое значение имеет не вид или характер дыхания, а интенсивность его. Чем выше интенсивность дыхания, тем ощутимее потери в массе сухого вещества и тем труднее уберечь зерновую массу от порчи.
На интенсивность процесса дыхания оказывают влияние такие факторы, как влажность зерна и зерновой массы, их температура, ботанические особенности, зрелость зерна, выполненность и крупность зерен, наличие травмированных и проросших зерен.
С увеличением влажности и температуры зерна интенсивность дыхания его возрастает. Недостаточный обмен воздуха в зерновой массе приводит к понижению интенсивности дыхания.
Резкое увеличение интенсивности дыхания во влажном и сыром зерне объясняется не только усилением его жизнедеятельности, но и активизацией микробиологических процессов.
В пределах уравненной критической влажности зерно кукурузы, овса, семян подсолнечника, просо, сорго проявляют большую интенсивность дыхания, чем зерно пшеницы, ржи, ячменя и семена бобовых культур. Пшеницы мягкие мучнистые дышат более интенсивно, чем стекловидные и твердые.
Недозрелые, щуплые, травмированные и проросшие зерна имеют повышенную интенсивность дыхания по сравнению с нормально вызревшим, выполненным сухим и целым зерном.
Интенсивность семян сорных растений имеет аналогичную зависимость от перечисленных факторов.
В процессе хранения при определенных условиях может возникнуть процесс самосогревания зерна.
Самосогреванием (или самонагреванием) зерновой массы называют явление повышения ее температуры вследствие протекающих в ней физиологических процессов (дыхания всех живых компонентов) и плохой теплопроводности.
В процессе самосогревания изменяются следующие показатели качества зерна
- органолептические показатели свежести (блеск, цвет, запах и вкус);
- технологические, пищевые и фуражные достоинства в связи с происходящими изменениями в его химическом составе;
- посевные качества.
При далеко зашедшем процессе самосогревания (повышение температуры до 50ᵒС и более) резко снижается сыпучесть зерновой массы, происходит интенсивное потемнение зерна, отдельные зерна оказываются проплесневевшими или прогнившими, зерно выделяет сильные запахи разложения. Процесс самосогревания завершается обугливанием зерна и полной потерей сыпучести зерновой массы, которая иногда превращается в монолит.
Систематически и правильно организованное наблюдение за температурой зерновых масс в течение всего срока хранения позволяет своевременно ликвидировать процесс самосогревания.
Характеристика зерна
Давая характеристику зерну, необходимо обратить внимание на зерновую массу в целом. Она выделяется, прежде всего своей неоднородностью
Все зерна основной культуры неоднородны по размерам, выполненности, влажности, плотности, химическому составу и другим показателям. При уборке урожая появляются зерна с механическими повреждениями: с нарушенными оболочками, треснувшие, расколотые. В зерновую массу попадают семена сорных и других культурных растений, органические и минеральные примеси. Для количественной характеристики свойств зерновой массы используют усредненные величины.
Для процесса сушки важное значение имеют такие физические свойства зерновой массы, как:
- скважистость,
- насыпная плотность,
- сыпучесть,
- самосортирование,
- гидравлическое сопротивление и теплофизические свойства:
- удельная теплоемкость
- теплопроводность
- температуропроводность.
Еще полезные статьи:
Эндосперм кукурузы
Зерно кукурузы отличается от других зерновых культур мощно развитыми плодовыми оболочками, глубоко вдающимися внутрь зерна крупными зародышами и и стекловидным эндоспермом. Плотные и гладкие оболочки зерна кукурузы затрудняют подвод влаги к его поверхности и при интенсивной сушке лопаются. Эндосперм кукурузы, состоящий на 75% из крахмала, по структуре отличается от эндосперма других культур.
Роговидная часть его характерна плотным расположением крахмальных зерен, промежутки между которыми заполнены белковыми веществами и углеводами. Зародыш кукурузы обладает повышенной влагоотдачей, в связи с чем при интенсивной сушке, может происходить растрескивание зерна в наиболее опасном месте — со стороны зародыша.
Влияние погодных факторов на качество зерна
Качество зерна пшеницы, как и другой сельскохозяйственной продукции, во многом зависит от почвенно-климатических условий района ее возделывания. Известна общая закономерность: с увеличением засушливости климата улучшаются мукомольно-хлебопекарные свойства зерна, повышается содержание в нем белка. Пшеничное зерно, выращенное в засушливых районах, всегда высоко ценится на международном рынке, оно используется как улучшатель низкобелковых пшениц.
Однако качественные показатели зерна не остаются стабильными. Даже в одной почвенно-климатической зоне они сильно изменяются по годам, а в ряде случаев и по отдельным хозяйствам. Определяется это многими факторами. Сорт, условия выращивания, в частности состояние почвенного плодородия, метеорологические условия вегетационного сезона, технология возделывания культуры, повреждения растений болезнями и вредителями и другие факторы действуют в сложном комплексе, и вычленение роли каждого из них связано со значительными трудностями
Между тем для сельскохозяйственного производства важно установить, какие именно условия определяют снижение качества получаемой продукции и что можно сделать для ослабления этого отрицательного влияния
С указанной целью были использованы материалы о качестве зерна мягких и твердых яровых пшениц в конкурсном сортоиспытании лаборатории селекции яровой пшеницы НИИСХ Юго-Востока и данные метеорологической станции при институте. Технологические показатели качества зерна определялись в лаборатории технологии под руководством А. И. Марушева.
В конкурсном сортоиспытании из года в год применяли примерно одинаковую технологию возделывания пшеницы. Посев проводили в специальном селекционном севообороте по рано вспаханной зяби после озимых, высевавшихся по чистому пару. На всех полях применяли снегозадержание, сев проводили сеялкой в первые дни после начала полевых работ. Убирали посевы раздельно. Таким образом, основным изменяющимся от года к году фактором урожая и качества зерна являлся характер погоды вегетационного сезона.
Другие признаки качества зерна
Чтобы узнать ценность зерна, недостаточно только рассчитать его натуру. Общий вывод зависит от внешнего вида продукта, запаха и зараженности насекомыми. Для понимания качества обязательно определяют стекловидность пшеницы, количество клейковины в ней и белка.
Не тронутое насекомыми дозревшее зерно должно иметь определенные форму, размер и окраску. Если пшеница деформирована или странного цвета, ее относят к черновому типу или сорным примесям. Продать ее сложно, если вообще возможно.
Особенно важна консистенция эндосперма, которая влияет на стекловидность. При дроблении на мельнице из высокостекловидного продукта получается больше крупок, а значит, и муки высшего и первого сортов, которые особенно ценятся. Такой муке свойственен белый или кремовый оттенок. Приготовленный из нее хлеб будет таким же. Из мучнистого эндосперма выходит гораздо меньше муки ценных сортов, она получается белого цвета с синеватым оттенком.
В качественной пшенице содержится много клейковины (от 10% до 60%). Основную массу ее белков составляют глиадин и глютенин. Показатель больше 28% считается высоким и весьма ценится.
Чтобы определить качество самой клейковины, смотрят на ее цвет, упругость, растяжимость и способность к набуханию. К примеру, светлая более упругая и растяжимая, а темной она становится из-за неправильного хранения или обработки, ошибок при созревании.
Клейковина формируется еще на стадии производства, но при необходимости во время послеуборочной обработки ее немного улучшают. Так, при очистке общей массы от примесей из нее убирают не самые лучшие зерна, в результате количество глютена растет. При сушке влажного зерна ослабленная клейковина становится крепче.
Химический состав пшеницы важен на каждом этапе: как в самом начале, при выведении новых сортов и формировании агростратегии при их выращивании, так и в самом конце, при хранении партии, ее обработке и последующей переработке.
Абсолютный вес зерна
Вес 1000 зерен в граммах, или абсолютный вес, является важным показателем семенных и технологических качеств зерна. В зависимости от условий выращивания пшеницы этот показатель подвержен очень резким изменениям.
Так, яровая пшеница Саратовская 29 за 24 года наблюдений шесть раз имела абсолютный вес зерна ниже 30 г и двенадцать раз выше 35 г. Наиболее высокий вес получен в 1971 г. (43,0 г) и самый низкий в 1954 г. (17,6 г).
На абсолютном весе зерна оказываются и сортовые особенности. Твердая пшеница Мелянопус 26 за 14 лет наблюдений ни разу не имела абсолютный вес ниже 35 г; он колебался за эти годы от 35,7 до 49,4 г. В пределах одного сорта при одинаковом уровне агротехники решающее влияние на абсолютный вес зерна оказывают метеорологические условия.
Формированию повышенного абсолютного веса зерна способствуют условия погоды, которые улучшают влагообеспеченность растений во время налива зерна и снижают напряженность транспирации. Достаточная весенняя влагозарядка почвы — первый показатель возможного в данном году хорошего налива зерна. Растения яровой пшеницы потребляют влагу из глубинных слоев почвы преимущественно после колошения, то есть в период формирования и налива зерна. Глубокое весеннее промачивание почвы и наличие больших запасов продуктивной влаги создают условия спокойного хода налива даже в засушливые годы.
В зоне южных черноземов за период с 1929 по 1969 г. 17 лет было с повышенным абсолютным весом зерна. Как правило, это были годы с весенними запасами продуктивной влаги в метровом слое почвы не менее 140 мм.
Недостаточное весеннее увлажнение почвы в некоторых случаях может быть компенсировано обильными осадками после посева пшеницы и главным образом во время налива зерна. За последние 70 лет было три случая (1945, 1967, 1969), когда при очень низких весенних запасах доступной растениям воды в метровом слое почвы (меньше 100 мм) получено зерно пшеницы с высоким абсолютным весом. Эти годы отличались большим количеством осадков и прохладной погодой во время налива зерна.
Вместе с тем за указанные годы было два случая (1938, 1948), когда при высоких весенних запасах доступной растениям воды в почве получен низкий абсолютный вес зерна. Связано это с недостаточным количеством осадков за время вегетации пшеницы при сухой, жаркой погоде во время налива или же с плохим укоренением растений.
Из метеорологических условий наиболее сильное влияние на формирование абсолютного веса зерна оказывает погода периода от колошения до созревания. Пониженная температура во время налива зерна сопутствует годам с повышенным абсолютным весом, а жаркая погода вызывает щуплость зерна и соответственно низкий абсолютный вес. Во все годы с абсолютным весом зерна яровой пшеницы более 35 г, как правило, средняя температура воздуха от колошения до созревания не превышает 21°. Учитывая, что таким годам предшествует и высокая весенняя влагозарядка почвы, по-видимому, между размерами весеннего увлажнения почвы и температурой периода налива зерна (вторая половина июня — первая половина июля) имеется некоторая коррелятивная связь.
В годы с повышенным количеством осадков в течение всего периода вегетации и особенно от колошения до созревания, когда бывает не более двух дней с суховеями и не более шести дней с максимальной температурой воздуха выше 30°, также отмечается высокий абсолютный вес зерна.
Анализ данных за отдельные годы показывает, что в годы с плохим наливом зерна количество осадков от посева до созревания яровой пшеницы обычно ,не превышает 120 мм, а в период от колошения до созревания — 50 мм. Наиболее устойчивым агрометеорологическим показателем плохого налива зерна является средняя температура воздуха во время созревания. Как правило, при средней температуре указанного периода выше 22° отмечается значительное снижение абсолютного веса зерна. В годы плохого налива от посева до созревания бывает не менее 10 суховейных дней и не менее 12 дней с максимальной температурой воздуха выше 30°.
В состав каждой зерновой массы входят:
- зерна (семена) основной культуры, а также зерна (семена) других культурных растений, которые по характеру использования и ценности сходны с зерном основной культуры,
- различные фракции примесей минерального и органического происхождения (в том числе и семена дикорастущих и культурных растений, не отнесенные к основному зерну),
- микроорганизмы,
- воздух межзерновых пространств.
Кроме этих постоянных компонентов в отдельных партиях зерна, зараженных вредителями, появляется еще одно живое начало – насекомые и клещи. Поскольку зерновая масса для них является средой, в которой они существуют и влияют на ее состояние, их следует рассматривать как пятый, дополнительный и крайне нежелательный компонент зерновой массы.
Таким образом, необходимо помнить, что каждая зёрновая масса – это комплекс живых организмов.
Свойства зерновой массы с учетом сказанного могут быть разделены на две группы: физические и физиологические.
Уметь точно определить качество каждой партии зерна, составить на основании документов, сопровождающих зерно, осмотра и анализа правильное представление о его особенностях, определить наиболее эффективные методы обработки и своевременно их осуществить, установить рациональный режим хранения – в этом заключается первоочередная задача работников ХПП и элеваторов.
Порядок выполнения работы
Определение
угла естественного откоса грунта в
воздушно-сухом состоянии производят
следующим образом. Прибор устанавливают
на стол, выдвижная створка при этом
опущена до дна. В малое отделение прибора
до верха засыпают испытываемый песок
(рис.2.4). После этого постепенно поднимают
выдвижную створку без толчков; при этом
прибор придерживают рукой. Грунт
постепенно частично пересыпается в
другое отделение до наступления положение
равновесия.
Рис.
2.4. Общий вид прибора для определения
угла естественного откоса песков (Ящик
Кулона).
Угол
между плоскостью свободного откоса и
горизонтальной плоскостью и есть угол
естественного откоса. По делениям на
днище и боковой стенке отсчитывают
высоту и заложение откоса и вычисляют
тангенс угла естественного откоса;
отсчеты ведут с точностью до 1мм.
Определение
угла естественного откоса грунта в
подводном состоянии отличается от
предыдущего тем, что после того, как в
малое отделение прибора насыпают
испытываемый грунт, в большое отделения
до верха наливают воду. Верхнюю створку
подымают на несколько миллиметров,
чтобы вода могла проникнуть в малое
отделение. Когда весь грунт пропитается
водой, поднимают створку выше и испытание
продолжают так же, как и предыдущее.
Результаты испытаний заносят в таблицу
2.4.
Зерновые, семена масличных культур, побочные продукты и заменители имеют определенные физические и механические свойства, и их поведение как сыпучей массы зависит от свободы истечения, размера и формы частиц, плотности, угла естественного откоса, внутреннего и внешнего трения, сцепляемости, влажности, электрического заряда и т. п.
По законам физики, в обычных условиях любое вещество существует в определенном состоянии, например, в газообразном, жидком или твердом. Газообразное состояние не обсуждается в этой главе, однако оно будет рассмотрено в разделе, посвященном взрывам пыли. Ниже перечисляются основные различия между веществом в жидком и твердом состоянии.
1. Статическое давление на жидкость передается одинаково во всех направлениях в отличие от твердого вещества, где давление передается только в одном направлении.
2. В отличие от жидкости твердое вещество оказывает сопротивление поперечной силе при скольжении.
3. При выгрузке на горизонтальную поверхность сыпучая масса образует конус с углом естественного откоса. Жидкость, вылитая на горизонтальную поверхность, образует лужу с углом естественного откоса, равным нулю.
4. Твердое вещество при сжатии сохраняет свою форму и силу сцепления.
Таким образом, основные характеристики массы гранулированного продукта представляют собой сочетание характеристик жидкости и твердого тела, т. е. «полужидкость».
Фактически гранулированные продукты упруги и обладают пластической деформацией. Они, подобно жидкости, приобретают форму емкости, в которой хранятся. Но в то же время гранулированные продукты — твердые вещества, так как образуют угол естественного откоса при высыпании продукта на горизонтальную ровную плоскость. Величина их прочности сцепления располагается между обладающим большей сцепляемостью твердым телом и жидкостью, характеризующейся меньшей сцепляемостью.
При исследовании физико-механических свойств гранулированных сыпучих материалов их представляют как комплекс очень большого числа мелких твердых частиц, которые могут перемещаться относительно друг друга и таким образом образовывать сыпучую массу.