Движение воздушных масс
Среди явлений, какие происходят в тропосфере, одним из самых обычных можно назвать ветер – поток воздуха, быстро движущийся вдоль земной поверхности. Источник появления ветра заключается в неравномерном распределении атмосферного давления. Когда скорость воздушных потоков усиливается, могут образовываться смерчи, торнадо и ураганы.
Колоссальные объёмы воздуха тропосферы, которые обладают одинаковыми характеристиками, называются воздушными массами. Они зависимы от участков, где формируются. При передвижении воздушные массы длительное время не меняют свои характеристики. Соприкасаясь, разные потоки воздуха вступают друг с другом в реакции. Эти две особенности предопределяют погодные условия в различных местностях. Воздействие воздушных потоков друг на друга порождает появление в вышине движущихся атмосферных вихрей – циклонов и антициклонов.
Циклоном называется огромный вихрь с низким атмосферным давлением в центре. Диаметр циклона может достигать нескольких тысяч километров. При циклоне обычно ненастье с сильными ветрами и осадками. Антициклон — это гигантский вихрь с высоким атмосферным давлением, несущий хорошую погоду: мало облаков, небольшой ветер, без осадков.
Строение атмосферы[править | править код]
Строение атмосферы нашей планеты до высоты 1800 км
Атмосферные слои до высоты 120 км
Тропосфераправить | править код
- Основная статья: Тропосфера
Её верхняя граница находится на высоте 8—10 км в полярных, 10—12 км в умеренных и 16—18 км в тропических широтах; зимой ниже, чем летом.
Нижний, основной слой атмосферы. Содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м
Тропопаузаправить | править код
- Основная статья: Тропопауза
Переходной слой между тропосферой и стратосферой; толщина колеблется от нескольких сотен метров до 1—2 км. Зимой тропопауза ниже, чем летом; кроме того, высота тропопаузы колеблется при прохождении циклонов и антициклонов. Средняя температура над полюсом зимой около —65°С, летом около —45°С; над экватором весь год около —70°С и ниже.
Стратосфераправить | править код
- Основная статья: Стратосфера
Верхняя граница — на высоте 50—55 км. Температура с ростом высоты возрастает до уровня около 0 °C. Малая турбулентность, ничтожное содержание водяного пара, повышенное по сравнению с ниже — и вышележащими слоями содержание озона (максимальная концентрация озона на высотах 20-25 км).
Стратопаузаправить | править код
- Основная статья: Стратопауза
Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).
Мезосфераправить | править код
- Основная статья: Мезосфера
Верхняя граница — на высоте 80—85 км Температура с высотой понижается со средним вертикальным градиентом (0,25—0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов, колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы.
Мезопаузаправить | править код
- Основная статья: Мезопауза
Переходной слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около —90°С).
Термосфераправить | править код
- Основная статья: Термосфера
Верхний предел — около 800 км. Температура растёт до высот 200—300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния») — основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород.
Экзосфера (сфера рассеяния)править | править код
- Основная статья: Экзосфера
Внешний слой атмосферы, из которого быстро движущиеся лёгкие атомы водорода могут вылетать (ускользать) в космическое пространство. Температура достигает уровня более 3000 К. На больших расстояниях от Земли (2—3 тыс. км и более) нейтральную экзосферу образуют почти исключительно атомы водорода, на более низких высотах заметную долю составляют атомы гелия, а ещё ниже — также и атомы кислорода.
Описание стратосферы
Стратосферой называют воздушный слой, который начинается на высоте 50 км у экватора и около 8 км — у полюсов. В переводе с греческого stratus означает «слой, настил». Эта зона очень разреженная, в ней очень мало частиц воды. Давление воздуха в верхней части стратосферы в 100 раз ниже, чем у поверхности, а в нижней — в 10 раз.
Температура воздуха с набором высоты возрастает: если в нижней части воздушного слоя она составляет -56 градусов, то в верхней — от -1 до 0. Прекращение нагрева воздуха наблюдается в стратопаузе — пограничном слое между мезосферой и стратосферой.
В стратосфере летают самолёты, чья скорость выше звуковой, и пассажирские лайнеры. Такая высота выбрана потому, что в нижних слоях стратосферы наблюдается стабильность воздушных потоков, а благодаря низкой температуре снижаются затраты топлива. Движение происходит в условиях малого аэродинамического сопротивления.
Однако есть предел: самолёт может подняться только до определённой высоты. В какой-то момент воздуха становится слишком мало, а он нужен, чтобы работали реактивные двигатели. В высоких слоях стратосферы самолету, чтобы получить приток воздуха, приходится перемещаться быстрее скорости звука. Поэтому на самую большую высоту залетают только боевые и сверхзвуковые пассажирские лайнеры, например, «Конкорд».
В стратосфере присутствуют метеорологические зонды. Они закреплены на огромных воздушных шарах и находятся в зависшем положении. Задача зондов — сбор информации о состоянии тропосферы и о происходящих изменениях.
Из живых организмов в стратосфере можно обнаружить бактерии, например, аэропланктон. Но не только микроорганизмы способны выживать на такой большой высоте: был случай, когда в двигатель самолёта попала крупная птица — гриф. Также известно, что утки, совершая сезонные перелёты, перемещаются над Эверестом.
Мировой рекорд по пребыванию на высоте установил вице-президент Google — американец Алан Юстас. Он поднялся на высоту 41 км и спрыгнул с парашютом. Чтобы оторваться от шара, пришлось привести в действие небольшое взрывное устройство. Во время свободного падения он развил скорость 1342 км/ч — это быстрее, чем движется звук.
Основные различия между тропосферой и стратосферой
- Тропосфера и стратосфера – это атмосферные зоны земли, существующие одна над другой. Тропосфера — это атмосферная зона планеты, которая может простираться от 8 до 18 км. Наоборот, стратосфера может простираться до высоты 50 км.
- Тропосфера и стратосфера отличаются друг от друга по температуре, что напрямую влияет на изменение высоты. В тропосфере температура снижается с увеличением высоты или высоты. Наоборот, в стратосфере температура увеличивается с высотой.
- Тропосфера отвечает за поддержание погоды на Земле и состоит из водяного пара и различных газов, включая азот, углекислый газ, кислород и другие газы. Благодаря наличию водяного пара и облаков тропосфера имеет обильное увлажнение. А вот стратосфера, с другой стороны, сравнительно сухая, так как не содержит водяного пара и облаков, за исключением районов полюсов.
- Довольно часто встречаются атмосферные возмущения, вызванные изменением движения воздуха и другими факторами. Тропосфера ограничена или сжата возмущением атмосферы. Тем не менее, стратосфера, с другой стороны, не испытывает никаких атмосферных возмущений, поскольку в ней есть горизонтальное движение воздуха и нет облаков.
- Цена на конвекцией течение происходило в тропосферном слое атмосферы, а стратосферная зона с другой стороны считается неконвективной зоной земной атмосферы.
Структура и состав земной атмосферы
Атмосфера Земли имеет толщину около 1000 километров и, в свою очередь, делится на несколько последовательных концентрических слоев, которые простираются от поверхности планеты в космическое пространство. С учетом классификации в зависимости от распределения температуры мы можем разделить ее на:
- тропосферу;
- стратосферу;
- мезосферу;
- термосферу.
Этой газовой оболочке, окружающей Землю, понадобилось миллионы лет, чтобы достичь нынешней структуры и состава, которые делают жизнь возможной, поскольку она защищает живое существо от вредного воздействия ультрафиолетового солнечного излучения.
Она является главным защитным механизмом различных форм жизни. Атмосферные газы образуют смесь, которую мы знаем как воздух. Уже в древние времена «воздух» считался одним из основных элементов или элементарных веществ наряду с огнем, водой и землей.
Примечание 1
Но именно в конце XIX – начале XX годов ученым и метеорологам удалось найти форму и материал, необходимые для изучения атмосферы на больших высотах и проведения соответствующих измерений до 12–16 км. Первый спектрометр был разработан в 1920 году, что позволило ученым найти другие газы, находившиеся в атмосфере при гораздо более низких концентрациях, такие как углекислый газ и озон. Было также отмечено, что концентрация этих газов варьируется в зависимости от места.
Из чего состоит атмосфера
Земная атмосфера состоит из различных типов газов, основная масса которых накапливается на первых 11 км высоты (95 % воздуха находится в его начальном слое), а их общая масса составляет около 5,1⋅1018 кг.
Ее толщина невелика, так как его масса (около 99 %) сосредоточена в первых 30 км от поверхности земли. По этой причине элементы концентрируются и сжимаются вблизи поверхности, хотя они рассеиваются по мере увеличения высоты.
Основными газами, составляющими его, являются:
- азот (78,08 %);
- кислород (20,94 %);
- водяной пар (от 1 до 4 % на поверхностном уровне);
- аргон (0,93 %).
Другие газы присутствуют в незначительных количествах:
- диоксид углерода (0,04 %);
- неон (0,0018 %);
- гелий (0,0005 %);
- метан (0,0001 %) и другие.
Все эти газы оказывают существенное влияние на климат Земли. Доли азота и кислорода необходимы для жизни человека, но оказывают меньшее влияние на атмосферные процессы и климат, причем наибольшее влияние оказывают переменные компоненты.
Со своей стороны, гетеросфера состоит из дифференцированных слоев молекулярного азота (80–400 км), атомарного кислорода (400–1100 км), гелия (1100–3500 км) и водорода (3500–10000 км).
Атмосферное давление и температура уменьшаются с высотой, поэтому внешние слои холодные и неплотные.
Считается, что нынешняя атмосфера развивалась из газов, выбрасываемых вулканами. Кислород, от которого зависит вся жизнь животных, вероятно, накапливается как избыток выбросов от растений, производящих его в качестве отходов во время фотосинтеза. Деятельность человека может влиять на уровни некоторых важных компонентов атмосферы, особенно углекислого газа и озона.
Атмосфера практически прозрачна для коротковолнового солнечного излучения, хотя она может поглощать длинноволновое излучение, которое является земным излучением. По этой причине она нагревается снизу.
Чем дальше от Земли, тем ниже температура. Часть излучения Земли поглощается газами в атмосфере, что предотвращает утечку всего тепла. Другими парниковыми газами являются пары CO2 и воды, которые также поглощают инфракрасное излучение. Это способствует повышению температуры в нижней части тропосферы.
Состав тропосферы
Ее состав всегда стабилен и относительно неизменен. Благодаря тому, что воздушные массы в ней постоянно двигаются вверх или вниз, они безостановочно перемешивают и нормализуют ее состав. На него влияют газы, высвобожденные из разломов земной коры и жизнедеятельность живых организмов. Например, фотосинтез растений и морского планктона вырабатывает кислород.
Основной газовый состав:
- Азот – 78% (необходим для питания растений).
- Кислород – 21% (используется для дыхания).
- Аргон, углекислый газ, неон и другие примеси – менее 1%.
Последнее время в ее составе наблюдается появление различных примесей и загрязнений. Чаще всего это результат человеческой деятельности: сжигание нефти, угля и газа, промышленные выбросы. Так, в тропосфере оказываются оксиды азота и серы, газ СО2.
Хотя загрязнители могут быть и естественного происхождения. Например, извержение вулкана выбрасывает в воздух двуокись углерода, сульфиты и водяной пар, а болота в процессе разложения органики выделяют много метана. Все это грозит Земле кислотными дождями и общим перегревом.
Свойства атмосферы[править | править код]
Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 15 км, хотя примерно до 115 км атмосфера содержит кислород.
Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.
В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа — 40 мм рт. ст., а паров воды −47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным — около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.
На высоте около 19—20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека «космос» начинается уже на высоте 15—19 км.
Плотные слои воздуха — тропосфера и стратосфера — защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация — первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.
По мере подъёма на все большую высоту над поверхностью Земли постепенно ослабляются, а затем и полностью исчезают такие привычные для нас явления, наблюдаемые в нижних слоях атмосферы, как распространение звука, возникновение аэродинамической подъёмной силы и сопротивления, передача тепла конвекцией и др.
В разреженных слоях воздуха распространение звука оказывается невозможным. До высот 60—90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100—130 км знакомые каждому лётчику понятия числа М ‘ и звукового барьера теряют свой смысл, хотя при больших скоростях полёта там ещё можно применить аэродинамическое крыло.
На высотах же 180—200 км начинается сфера чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы. Если при таком полёте развивается центробежная сила, равная силе тяжести на данной высоте, то летательный аппарат становится искусственным спутником Земли.
На высотах выше 100 км атмосфера лишена и другого замечательного свойства — способности поглощать, проводить и передавать тепловую энергию путём конвекции (т. е. с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, — с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является радиационное излучение.
Мезосфера
Мезосфера — это последний атмосферный слой, в котором газы всё ещё смешиваются в воздухе и не организованы их массой. Этот слой считается наукой самым сложным для изучения, поэтому о нём мало подтверждённой информации.
Толщина мезосферы также составляет 35 км от стратопаузы, что означает, что она расположена между стратосферой и термосферой. Термин «мезосфера» происходит от греческого mesos (означает «центр»), так как является третьим среди пяти слоёв Земной атмосферы.
Метеозонды и самолёты не могут достичь так высоко, чтобы достичь мезосферы. В то же время спутники могут вращаться только над ним, таким образом получается, что они не могут должным образом измерять характеристики этого слоя.
Единственный способ изучения мезосферы в наши дни — это использование ракет, которые собирают довольно мало информации в каждой миссии.
Именно в мезосфере происходит сгорание небесных тел, попадающих в Земную атмосферу, что приводит к таким явлениям, как звездопад (метеорные потоки).
Метеорный поток (звёздный дождь) происходит, когда небесное тело входит в Земную атмосферу.
Из-за очень высокой температуры небесное тело начинает гореть и обычно распадается на несколько более мелких фрагментов.
Состав мезосферы
Процентное содержание кислорода, азота и углекислого газа в мезосфере, по существу, такое же, как и в слоях ниже. Испарения воды там реже, чем в стратосфере, что, в свою очередь, переносит часть озона в мезосферу.
В мезосфере также есть материал из метеоров, которые испаряются при попадании в атмосферу. Таким образом, мезосфера также состоит из относительно высокой доли железа и других металлов.
Температура мезосферы
Температура в мезосфере уменьшается с увеличением высоты, варьируя от -3° C в самой низкой точке (стратопауза) до -143° C в самой высокой точке (мезопауза — самая холодная область всей Земной атмосферы).
Что встречается в мезосфере?
Некоторые примеры того, что можно найти в стратосфере:
- метеоры в сгорании;
- серебристые облака (особый вид облаков, которые светятся ночью).
Особенности мезосферы
Мезосфера — слой, расположенный в промежутке между 45 и 90 километрами. Его верхняя часть называется мезопаузой и является самым холодным местом: воздух здесь охлаждается до -143 градусов.
Этот участок атмосферы пока не очень хорошо изучен. Это обусловлено слишком малым давлением газов: оно в несколько тысяч раз ниже того, что наблюдается у поверхности планеты. Воздушные шары, поднявшись до определённой точки, не летят выше, а зависают. Использовать для изучения мезосферы самолёты с реактивными двигателями тоже не получается, так как принцип их движения в условиях, когда газ сильно разрежен, утрачивает смысл. Аэродинамика корпуса и крыльев становится бесполезной.
Перемещаться в мезосфере могут только ракетопланы или ракеты. К первым относят самолёты, оснащённые ракетными двигателями. Одна из таких машин — X-15. Это самый быстрый ракетоплан, сумевший подняться на высоту 108 км. Однако такие аппараты летят слишком быстро, а за короткое время не удаётся провести основательного изучения воздушного слоя. Летательные аппараты либо движутся выше, либо опускаются, в обоих случаях покидая мезосферу.
В этом же слое сгорают и метеориты. Наблюдатели, находящиеся на земле, видят своеобразное свечение.
Помимо этого, каждый день на Землю оседает от 100 до 9−10 тыс. тонн космической пыли. Эти частицы оказывают некоторое влияние на дождеобразование, хотя кардинально изменить циркуляцию атмосферы они неспособны.
История образования атмосферы
Согласно наиболее распространённой теории, атмосфера Земли на протяжении истории последней перебыла в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера. На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком, водяным паром). Так образовалась вторичная атмосфера. Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:
- утечка легких газов (водорода и гелия) в межпланетное пространство;
- химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.
Постепенно эти факторы привели к образованию третичной атмосферы, характеризующейся гораздо меньшим содержанием водорода и гораздо большим — азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).
Азот
Образование большого количества азота N2{\displaystyle {\ce {N2}}} обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом O2{\displaystyle {\ce {O2}}}, который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N2{\displaystyle {\ce {N2}}} выделяется в атмосферу в результате денитрификации нитратов и других азотосодержащих соединений. Азот окисляется озоном до NO{\displaystyle {{\ce {NO}}}} в верхних слоях атмосферы.
Азот N2{\displaystyle {\ce {N2}}} вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, которые могут быть эффективными сидератами — растениями, которые не истощают, а обогащают почву естественными удобрениями.
Кислород
Состав атмосферы начал радикально меняться с появлением на Земле живых организмов, в результате фотосинтеза, сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений — аммиака, углеводородов, закисной формы железа, содержавшейся в океанах и другом. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере, литосфере и биосфере, это событие получило название Кислородная катастрофа.
В течение фанерозоя состав атмосферы и содержание кислорода претерпевали изменения. Они коррелировали прежде всего со скоростью отложения органических осадочных пород. Так, в периоды угленакопления содержание кислорода в атмосфере, видимо, заметно превышало современный уровень.
Углекислый газ
Содержание в атмосфере CO2{\displaystyle {\ce {CO2}}} зависит от вулканической деятельности и химических процессов в земных оболочках, но более всего — от интенсивности биосинтеза и разложения органики в биосфере Земли. Практически вся текущая биомасса планеты (около 2,4·1012 тонн) образуется за счёт углекислоты, азота и водяного пара, содержащихся в атмосферном воздухе. Захороненная в океане, в болотах и в лесах органика превращается в уголь, нефть и природный газ.
Инертные газы
Источник инертных газов — аргона, гелия и криптона — вулканические извержения и распад радиоактивных элементов. Земля в целом и атмосфера в частности обеднены инертными газами по сравнению с космосом.
Из чего состоит атмосфера и как она устроена
Атмосфера считается газовой оболочкой планеты Земля. Верхняя граница ее достигает 1000 км. Получается, что наше существование протекает на дне газового океана.
Из чего же состоит атмосфера? Эта оболочка представляет собой смесь газов, получивших название воздух. Состоит атмосфера из газов, но в воздухе достаточное количество различных веществ.
Атмосфера по своей структуре неоднородная и возможно отметить ряд слоев. Познакомимся с ними на рисунке.
У поверхности Земли расположен слой, получивший название тропосфера. Средняя ее высота составляет 10-11 км, а максимальная высота тропосферы достигает 17 км над экватором. В тропосфере сосредоточено 80% всего воздуха, состоящего из азота, кислорода, углекислого газа и некоторых других веществ.
По большей части атмосфера состоит из азота, который играет значительную роль в жизни всех организмов. Из азота состоят белки, которые формируют основу любого организма. Его соединения необходимы для питания растений.
Другим газом в составе воздуха является кислород. Его роль еще более велика, чем азота. Всем известно, что он используется для дыхания всеми живыми существами. При этом дефицит кислорода в воздушной оболочке регулярно пополняется растениями, потребляющими углекислый газ для его образования.
Углекислый газ можно сравнить с «утеплителем» Земли: он пропускает солнечную энергию, но задерживает тепло.
Атмосфера состоит в основном из двух газов, однако, в ней достаточно и других веществ.
Твердые частицы появляются вследствие пожаров, при извержениях вулканов.
Составной частью нижних слоев оболочки считается водяной пар, из него образуются различные осадки.
Очень интересно то, что с высотой меняется температура воздуха в тропосфере. При подъеме наблюдается снижение температуры, в связи с чем становится холоднее.
Почему же в тропосфере температура с увеличением высоты меняется в меньшую сторону? Такая закономерность связана с неравномерным нагреванием воздуха – нижние слои получают больше тепла от нагретой Солнцем поверхности земли. Излучение Солнца проходит через тропосферу, однако не нагревает ее, и не задерживается в ней, а поверхность планеты не может прогреть весь слой. Соответственно температура в тропосфере уменьшается с высотой, причем вверху она может достигать -50С.
Выше тропосферы идет следующий слой – стратосфера, которая достигает 50-60км. В среднем слое атмосферы – стратосфере– очень низкое содержание пара и практически не образуется облаков.
Изменение температуры в стратосфере также происходит иначе. На уровне 20 км наблюдается самая низкая температура -60С, начиная с 25 км, она растет и может достигать +10С.
Этот рост температуры объясняется поглощением солнечной радиации озоном, которого в данном слое до 60%. Образуется озон из кислорода под действием лучей Солнца, а также электрических разрядов. Из него формируется озоновый экран в стратосфере над нашей планетой. Экран поглощает ультрафиолетовые лучи Солнца, которые в большом количестве губительно действуют на живые организмы.
Тропосфера считается наиболее изученным слоем газовой оболочки, а вот стратосфера и все, что находится выше, все больше привлекают внимание человека. Данные о них ученые получают с искусственных спутников и космических кораблей
В 2012 году был совершен уникальный прыжок из стратосферы.
Выше стратосферы находятся еще несколько слоев. Здесь формируются серебристые облака, состоящие из ледяных кристаллов. Также можно наблюдать полярное сияние, а иногда магнитные бури.
Полярное сияние на острове Исландия
Стратосфера и мезосфера
Над тропосферой до высоты 50-55 км лежит стратосфера, характеризующаяся тем, что температура в ней в среднем растет с высотой. Переходный слой между тропосферой и стратосферой (толщиной 1-2 км) носит название тропопаузы.
Выше были приведены данные о температуре на верхней границе тропосферы. Эти температуры характерны и для нижней стратосферы. Таким образом, температура воздуха в нижней стратосфере над экватором всегда очень низкая; притом летом много ниже, чем над полюсом.
Нижняя стратосфера более или менее изотермична. Но, начиная с высоты около 25 км, температура в стратосфере быстро растет с высотой, достигая на высоте около 50 км максимальных, притом положительных значений (от +10 до +30°). Вследствие возрастания температуры с высотой турбулентность в стратосфере мала.
Водяного пара в стратосфере ничтожно мало. Однако на высотах 20-25 км наблюдаются иногда в высоких широтах очень тонкие, так называемые перламутровые облака. Днем они не видны, а ночью кажутся светящимися, так как освещаются солнцем, находящимся под горизонтом. Эти облака состоят из переохлажденных водяных капелек. Стратосфера характеризуется еще тем, что преимущественно в ней содержится атмосферный озон, о чем было сказано выше. С этой точки зрения она может быть названа озоносферой. Рост температуры с высотой в стратосфере объясняется именно поглощением солнечной радиации озоном.
Над стратосферой лежит слой мезосферы, примерно до 80 км. Здесь температура с высотой падает до нескольких десятков градусов ниже нуля. На высотах, близких к верхней границе мезосферы (75-90 км), наблюдаются еще особого рода облака, также освещаемые солнцем в ночные часы, так называемые серебристые. Наиболее вероятно, что они состоят из ледяных кристаллов.
Какие животные и растительные организмы есть в тропосфере
До отдаленных и высоких слоев тропосферы добираются только организмы воздушной экосистемы способные летать: птицы, насекомые, споры микроорганизмов и растений. В местах соприкосновения с водой обитают планктон и водоросли.
Ниже в гидросфере находится – огромное разнообразие морских живностей (рыб, млекопитающих и т.д.). Энергия, поставляемая тропосферой, распределяет через систему океанических течений питательные вещества, регулирует соленость вод и их температуру, тем самым оказывая положительное влияние на морскую экологию.
На суше (в приземном слое) живут все остальные виды растений, насекомых и животных, в том числе человек. Ниже в литосфере – мелкие млекопитающие (кроты), черви, микроорганизмы почвы, грибы.
стратосфера
Стратосфера является вторым по величине слоем атмосферы, а также вторым, ближайшим к земной поверхности. По оценкам, он содержит около 15% от общей массы Земли в атмосфере.
Толщина стратосферы составляет 35 км от тропопаузы, что означает, что она расположена между тропосферой и мезосферой. Термин стратосфера происходит от греческого страто (слоя), чтобы обозначить тот факт, что сама стратосфера подразделяется на другие меньшие слои.
Слои стратосферы образуются из-за отсутствия климатических явлений, которые смешивают воздух. Таким образом, существует четкое разделение между холодным и тяжелым воздухом, который расположен ниже, и теплым, легким воздухом, расположенным выше. Таким образом, с точки зрения температуры стратосфера функционирует так, что это противоречит тропосфере
Будучи высокостабильным регионом (потому что нет никаких изменений воздуха), пилоты самолетов, как правило, остаются в начале стратосферы, чтобы избежать турбулентности. Именно на этой высоте самолеты и воздушные шары достигают максимальной эффективности.
Некоторые самолеты, особенно реактивные, поднимаются в стратосферу, чтобы избежать трения и изменений воздуха.
Стратосфера также содержит известный озоновый слой, который отвечает за поглощение большей части ультрафиолетового излучения, испускаемого солнцем. Без озонового слоя жизнь на Земле, как мы ее знаем, была бы невозможна.
Подобно тропосфере, стратосфера также имеет область, которая ограничивает ее конец и отмечает начало мезосферы, называемую стратопаузой.
Состав стратосферы
Большинство элементов, найденных на поверхности Земли и в тропосфере, не достигают стратосферы. Вместо этого они обычно:
- разлагается в тропосфере
- быть устраненным солнечным светом
- быть возвращены на поверхность Земли через дождь или другие дожди
Из-за инверсии в динамике температуры между тропосферой и стратосферой почти не происходит воздухообмена между двумя слоями, в результате чего пары воды существуют в стратосфере только в незначительных количествах. По этой причине формирование облаков в этом слое чрезвычайно затруднено.
Что касается газов, стратосферу формирует преимущественно озон, присутствующий в озоновом слое. Считается, что 90% всего озона в атмосфере находится в этом регионе. Кроме того, стратосфера содержит элементы, переносимые извержениями вулканов, такие как оксиды азота, азотная кислота, галогены и т. Д.
Температура в стратосфере
Температура в стратосфере увеличивается с увеличением высоты, варьируя от -51 ° C в самой низкой точке (тропопауза) до -3 ° C в самой высокой точке (стратопауза).
Синоптические наблюдения масштаба и понятия
Принуждение
Принуждение — термин, использованный метеорологами, чтобы описать ситуацию, где изменение или событие в одной части атмосферы вызывают усиливающееся изменение в другой части атмосферы. Это обычно используется, чтобы описать связи между верхними, средними или более низкими уровнями (такими как расхождение верхнего уровня, вызывающее более низкую сходимость уровня в формировании циклона), но может иногда также использоваться, чтобы описать такие связи по расстоянию, а не одной только высоте. В некотором отношении teleconnections можно было считать типом принуждения.
Расхождение и сходимость
Область сходимости — та, в которой полная масса воздуха увеличивается со временем, приводя к увеличению давления в местоположениях ниже уровня сходимости (вспомните, что атмосферное давление — просто общая масса воздуха выше данного пункта). Расхождение — противоположность сходимости — область, где полная масса воздуха уменьшается со временем, приводя к падающему давлению в регионах ниже области расхождения. Где расхождение происходит в верхней атмосфере, будет воздух, входящий, чтобы попытаться уравновесить чистый убыток массы (это называют принципом массового сохранения), и есть получающееся восходящее движение (положительная вертикальная скорость). Другой способ заявить это состоит в том, чтобы сказать, что области верхнего воздушного расхождения способствуют, чтобы понизить сходимость уровня, формирование циклона и положительную вертикальную скорость. Поэтому, идентификация областей верхнего воздушного расхождения является важным шагом в прогнозировании формирования поверхностной низкой области давления.
Расположение в пространстве
Высота тропосферы составляет 12 км в районе верхней границы. Значение носит условный характер, определяется географической широтой и климатическими условиями. Зимой и во время циклонов оно уменьшается, летом и при антициклонах – увеличивается. В районе полюсов верхняя точка находится на расстоянии около 8 км, экватора – 17 км, умеренных широт – 11 км. Следует вывод, что граница тропосферы пролегает на разной высоте.
По мере подъема вверх, давление и температура в тропосфере снижается на 0,5 – 0,7 градусов через каждые 100 метров. На неопределенном уровне она достигает минус 40 – 80 С и перестает падать. Начинается тропопауза – верхний слой. Он распространяется на высоту от нескольких сотен метров до 3 км. Осуществляет функции пограничника между двумя сферами. Толщина тропосферы — величина непостоянная.
Тропопауза часто разрушается и создается под влиянием климата. Например, в субтропиках это происходит под действием струйных течений. Она регулирует климат, подстраиваясь под полярные и тропические потоки. Часто этот сложный процесс порождает две тропопаузы, одна из которых распадается. Таким образом, толщина тропосферы напрямую зависит от температурного профиля.
Формирование облаков в тропосфере.