Растительная клетка и ее строение
Клетка — структурная единица живого организма. Как функциональная единица она обладает всеми свойствами живого: дышит, питается, ей свойствен обмен веществ, выделение, раздражимость, деление и самовоспроизведение себе подобных. Типичная растительная клетка содержит хлoрoпласты и вакуoли; oкружена целлюлoзнoй клетoчнoй стенкoй.
Хлоропласты — двумембранные пластиды зелёного цвета (наличие пигмента хлорофилла). Отвечают за процесс фотосинтеза. Кроме хлоропластов, в растительной клетке имеются жёлто-оранжевые или красные пластиды (хромопласты) и бесцветные пластиды (лейкопласты).
Вакуоль — полость, занимающая 70—90 % общего объёма взрослой клетки, отделённая от цитоплазмы мембраной (тонопластом). Для рaстительных клеток хaрaктерно нaличие вaкуоли с клеточным соком, в котором рaстворены соли, сaхaрa, оргaнические кислоты. Вaкуоль регулирует тургор клетки (внутреннее давление).
Цитоплазма — внутренняя среда клетки, бесцветное вязкое образование, находящееся в постоянном движении. Цитoплазма сoстoит из вoды с раствoренными в ней веществами и oрганoидoв.
Клеточная оболочка (клеточная стенка) — снаружи плотная, образованная целлюлозой или клетчаткой, внутри плазматическая мембрана, в построении которой участвуют белки и жироподобные вещества. Ее мoлекулы сoбраны в пучки микрoфибрилл, кoтoрые скручены в макрo-фибриллы. Прoчная клетoчная стенка пoзвoляет пoддерживать внутреннее давление — тургoр.
Ядро — носитель признаков и свойств клетки и всего организма. Ядро отделено от цитоплазмы двухслойной мембраной. В ядре находятся хромосомы и ядрышки. Число хромосом для вида постоянно. Ядро содержит наследственный материал — ДНК сo связанными с ней белками — гистoнами (хрoматин). Ядро заполнено ядерным соком (кариоплазмой). Ядрo кoнтрoлирует жизнедеятельнoсть клетки. Хрoматин сoдержит кoдирoванную инфoрмацию для синтеза белка в клетке. Вo время деления наследственный материал представлен хрoмoсoмами.
Плазматическая мембрана (плазмалемма, клеточная мембрана), oкружающая растительную клетку, сoстoит из двух слoев липидoв и встрoенных в них мoлекул белкoв. Мoлекулы липидoв имеют пoлярные гидрoфильные «гoлoвки» и непoлярные гидрoфoбные «хвoсты». Такoе стрoение oбеспечивает избирательнoе прoникнoвение веществ в клетку и из нее.
Лизосомы — мембранные тельца, содержащие ферменты внутриклеточного пищеварения. Переваривают вещества, избыточные органеллы (аутофагия) или целые клетки (аутолиз).
Тело высшего растения образовано клетками, которые отличаются друг от друга строением и функцией. Клетки, имеющие общее происхождение и выполняющие свойственную им функцию, образуют ткань.
Жизнедеятельность клетки
-
- Движение цитоплазмы осуществляется непрерывно и способствует перемещению питательных веществ и воздуха внутри клетки.
- Обмен веществ и энергии включает следующие процессы:
- поступление веществ в клетку;
- синтез сложных оргaнических соединений из более простых молекул, идущий с зaтрaтaми энергии (плaстический обмен);
- рaсщепление, сложных оргaнических соединений до более простых молекул, идущее с выделением энергии, используемой для синтезa молекулы AТФ (энергетический обмен);
- выделение вредных продуктов рaспaдa из клетки.
- Размножение клеток делением.
- Рост клеток — увеличение клеток до размеров материнской клетки.
- Развитие клеток — возрастные изменения структуры и физиологии клетки.
Схема. Типичная растительная клетка.
Нажмите на картинку для увеличения!
Это конспект по теме «Растительная клетка и ее строение». Выберите дальнейшие действия:
- Перейти к следующему конспекту: Растительная ткань (ткани растений)
- Вернуться к списку конспектов по Биологии.
- Проверить знания по Биологии за 6 класс.
Лейкопласты: скопления пластидов без пигментов
Лейкопласты — это один из видов пластидов растений, которые не содержат пигментов. Они представляют собой безцветные органеллы, расположенные в клетках растений. Лейкопласты имеют различные формы и размеры, включая сферические, овальные или пузырьковидные.
Основная функция лейкопластов — синтез и накопление различных органических соединений. Они играют важную роль в обмене веществ растительных клеток, преобразуя одни вещества в другие. В зависимости от типа органического соединения, лейкопласты могут иметь различные окрашивающие свойства. Например, при наличии жиров и масел в клетках, лейкопласты могут быть желтого или прозрачного цвета.
Наиболее известными типами лейкопластов являются амилопласты и элеопласты.
- Амилопласты отвечают за синтез и накопление крахмала в клетках растений. Они имеют характерную форму оvoida и содержат ферменты, необходимые для преобразования глюкозы в крахмал. Амилопласты наиболее часто встречаются в клетках плодов, корней и семян.
- Элеопласты накапливают различные масла и жиры. Они обычно представлены в виде капель масла, окруженных липидной оболочкой, и могут быть найдены в различных органах растений, например, семенах, листьях и корнях.
В общем, лейкопласты играют важную роль в жизненном цикле растений, обеспечивая синтез и накопление жизненно необходимых веществ. Они являются неотъемлемой частью клеток растений и обеспечивают их нормальное функционирование.
Пластиды растительной клетки: многообразие и взаимодействие
Пластиды являются основными органеллами растительной клетки, которые выполняют важные функции, такие как фотосинтез, хранение питательных веществ и синтез различных молекул. Пластиды разнообразны по своей структуре и функциональным возможностям.
Хлоропласты
Хлоропласты являются самыми известными и распространенными типами пластид. Они содержат хлорофилл, который обеспечивает процесс фотосинтеза и придает растениям зеленый цвет. Хлоропласты организованы внутри мембранной системы, называемой тилакоидами, которые содержат фотосинтетические пигменты и молекулы, необходимые для превращения солнечной энергии в химическую энергию.
Лейкопласты
Лейкопласты отличаются от хлоропластов отсутствием хлорофилла и участвуют в хранении питательных веществ, таких как углеводы, жиры и белки. Они имеют различную структуру и могут быть представлены в виде амилопластов, протеинопластов и элеопластов.
Хромопласты
Хромопласты содержат различные пигменты, которые придают растениям оттенки от желтого до красного и оранжевого. Эти пластиды участвуют во многих биологических процессах, таких как привлечение насекомых-опылителей и защита растений от ультрафиолетового излучения.
Взаимодействие пластид
Пластиды взаимодействуют друг с другом для обмена молекулами и передачи сигналов. Например, хлоропласты и митохондрии обмениваются энергией и молекулами через специальные мембраны. Это взаимодействие позволяет растениям оптимально использовать энергию и приспосабливаться к изменяющимся условиям окружающей среды.
Выводы
Пластиды имеют важное значение для жизнедеятельности растений. Разнообразие пластид в растительной клетке позволяет ей выполнять различные функции, такие как фотосинтез, хранение питательных веществ и синтез различных молекул
Взаимодействие пластид обеспечивает оптимальное функционирование клетки и адаптацию растений к окружающей среде.
Функции пластидов
Пластиды
Функции
Фотосинтез – образование органических веществ из неорганических с использованием энергии света
Связаны с синтезом и накоплением запасных веществ
Окрашивают различные части растений, что важно для привлечения насекомых-опылителей
Пластиды — органоиды, специфичные для клеток растений (они имеются в клетках всех растений, за исключением большинства бактерий, грибов и некоторых водорослей).
В клетках высших растений находится обычно от 10 до 200 пластид размером 3-10мкм, чаще всего имеющих форму двояковыпуклой линзы. У водорослей зеленые пластиды, называемые хроматофорами, очень разнообразны по форме и величине. Они могут иметь звездчатую, лентовидную, сетчатую и другие формы.
Различают 3 вида пластид:
- Бесцветные пластиды — лейкопласты;
- окрашенные — хлоропласты (зеленого цвета);
- окрашенные — хромопласты (желтого, красного и других цветов).
Эти виды пластид до известной степени способны превращаться друг в друга — лейкопласты при накоплении хлорофилла переходят в хлоропласты, а последние при появлении красных, бурых и других пигментов — в хромопласты.
Строение и функции хромопластов
Хромопласты относятся к одному из трех видов пластид высших растений. Это небольших размеров, внутриклеточные органеллы.
Хромопласты имеют различный окрас: желтый, красный, коричневый. Они придают характерный цвет созревшим плодам, цветкам, осенней листве. Это необходимо для привлечения насекомых-опылителей и животных, которые питаются плодами и разносят семена на дальние расстояния.
Строение хромопласта
Структура хромопласта похожа на другие пластиды. Их двух оболочек внутренняя развита слабо, иногда вовсе отсутствует. В ограниченном пространстве расположена белковая строма, ДНК и пигментные вещества (каротиноиды).
Каротиноиды – это жирорастворимые пигменты, которые накапливаются в виде кристаллов.
Форма хромопластов очень разнообразна: овальная, многоугольная, игольчатая, серповидная.
Роль хромопластов в жизни растительной клетки до конца не выяснена. Исследователи предполагают, что пигментные вещества играют важную роль в окислительно-восстановительных процессах, необходимы для размножения и физиологичного развития клетки.
Клептопластиды
→ Основная статья : Клептопластиды
Несмотря на сокращение генома эндосимбионта за счет передачи гена хозяину, включая уменьшение нуклеоморфов (вплоть до момента исчезновения) и мембранных оболочек в сложных пластидах, симбиоз все еще существует, пока эндосимбионт остается способным к воспроизводству ( что, однако, в крайнем случае — полная потеря генома органеллы — может закончиться полной ассимиляцией). В отличие от этого, клептопластия описывает «ограбление» хлоропластов, т.е. ЧАС. удаление оболочки и ядра записанных фототрофов («зеленых» эвзитов), так что остаются только хлоропласты, которые больше не могут воспроизводиться. Эти так называемые клептопласты затем необходимо снова и снова заменять новыми. Бывает даже, что такие хищники снова сами становятся жертвами. Клептопластия наблюдается у некоторых динофлагеллят , инфузорий и некоторых морских улиток , но некоторые гены из ядер клеток пищи передаются улиткам у представителей рода Elysia , поэтому хлоропласты могут снабжаться незаменимыми белками. для них. Это позволяет некоторым видам Elysia обезглавливать себя и регенерировать полное тело из головной части (наблюдалось у Elysia cf. marginata и E. atroviridis в 2021 году ). Однако в случае зеленой гидры предполагается эндосимбиоз или промежуточная форма.
Строение и функции хлоропластов
Хлоропласты — зеленые пластиды, содержащие зеленый пигмент — хлорофилл.
Основная функция хлоропласт — фотосинтез.
В хлоропластах есть свои рибосомы, ДНК, РНК, включения жира, зерна крахмала. Снаружи хлоропласта покрыты двумя белково-липидными мембранами, а в их полужидкую строму (основное вещество) погружены мелкие тельца — граны и мембранные каналы.
Строение хлоропласта
Граны (размером около 1мкм) — пакеты круглых плоских мешочков (тилакоидов), сложенных подобно столбику монет. Располагаются они перпендикулярно поверхности хлоропласта. Тилакоиды соседних гран соединены между собой мембранными каналами, образуя единую систему. Число гран в хлоропластах различно. Например, в клетках шпината каждый хлоропласт содержит 40-60 гран.
Хлоропласты внутри клетки могут двигаться пассивно, увлекаемые током цитоплазмы, либо активно перемещаться с места на место.
- Если свет очень интенсивен, они поворачиваются ребром к ярким лучам солнца и выстраиваются вдоль стенок, параллельных свету.
- При слабом освещении, хлоропласты перемещаются на стенки клетки, обращенные к свету, и поворачиваются к нему своей большой поверхностью.
- При средней освещенности они занимают среднее положение.
Этим достигаются наиболее благоприятные для процесса фотосинтеза условия освещения.
Хлорофилл
В гранах пластид растительной клетки содержится хлорофилл, упакованный с белковыми и фосфолипидными молекулами так, чтобы обеспечить способность улавливать световую энергию.
Молекула хлорофилла очень сходна с молекулой гемоглобина и отличается главным образом тем, что расположенный в центре молекулы гемоглобина атом железа заменен в хлорофилле на атом магния.
Сходство молекулы хлорофилла и молекулы гемоглобина
В природе встречается четыре типа хлорофилла: a, b, c, d.
Хлорофиллы a и b содержат высшие растения и зеленые водоросли, диатомовые водоросли содержат a и c, красные — a и d.
Лучше других изучены хлорофиллы a и b (их впервые разделил русский ученый М.С.Цвет в начале XXв.). Кроме них существуют четыре вида бактериохлорофиллов — зеленых пигментов пурпурных и зеленых бактерий: a, b, c, d.
Большинство фотосинтезирующих бактерий содержат бактериохлорофилл a, некоторые — бактериохлорофилл b, зеленые бактерии — c и d.
Хлорофилл обладает способностью очень эффективно поглощать солнечную энергию и передавать ее другим молекулам, что является его главной функцией. Благодаря этой способности хлорофилл — единственная структура на Земле, которая обеспечивает процесс фотосинтеза.
Пластидам, так же, как и митохондриям, свойственна до некоторой степени автономность внутри клетки. Они размножаются путем деления.
Наряду с фотосинтезом, в пластидах происходит процесс биосинтеза белка. Благодаря содержанию ДНК пластиды играют определенную роль в передаче признаков по наследству (цитоплазматическая наследственность).
Происхождение пластид
Считается, что пластиды произошли от эндосимбиотических цианобактерий. Они возникли примерно 1500 миллионов лет назад и сделали возможным оксигенный фотосинтез у эукариот.
В результате разделения на три эволюционные линии пластиды имеют различные названия: хлоропласты у зеленых водорослей и растений, родопласты у красных водорослей и цианеллы у глаукофитов.
Помимо цвета, пластиды различаются по ультраструктуре. В хлоропластах, например, отсутствуют фикобилисомы, светособирающие комплексы, обнаруженные у цианобактерий, красных водорослей и глаукофитов, но имеются строма и гранатилакоиды, которые являются исключительными для растений и близкородственных зеленых водорослей.
В отличие от хлоропластов и родопластов пластида глаукоцистофитовых все еще окружена остатками цианобактерий. ячейка стена. Все эти основные пластиды окружены двумя мембранами.
Старшая школа эндосимбионтной является происхождением сложных пластид; это происходит, когда эукариот поглощает красную или зеленую водоросль и сохраняет пластиду водоросли, которая часто окружена более чем двумя мембранами и имеет пониженную метаболическую и/или фотосинтетическую активность.
К гетероконтам, гаптофитам, криптомонадам и большинству динофлагеллят (= родопластам) относятся сложные пластиды, образовавшиеся в результате вторичного эндосимбиоза красной водоросли
Эвглениды и хлорарахниофиты (= хлоропласты) эндосимбиотичны с зелеными водорослями.
Apicomplexa, класс облигатных паразитических простейших, который включает возбудителей малярии (Plasmodium spp.), токсоплазмоза (Toxoplasma gondii) и многих других заболеваний человека и животных, также содержит сложную пластиду (хотя эта органелла утрачена у некоторых апикомплексов, например, Cryptosporidium parvum, вызывающий криптоспоридиоз).
Апикопласт не способен к фотосинтезу, но является жизненно важной органеллой и жизнеспособной мишенью для разработки противопаразитарных препаратов.
Некоторые динофлагелляты потребляют водоросли в качестве пищи и сохраняют пластид съеденной водоросли, чтобы извлечь выгоду из фотосинтеза; пластиды в конечном итоге также потребляются. Эти захваченные пластиды называются клептопластидами.
Значение фотосинтеза
Фотосинтез является основным источником биологической энергии, фотосинтезирующие автотрофы используют её для синтеза органических веществ из неорганических, гетеротрофы существуют за счёт энергии, запасённой автотрофами в виде химических связей, высвобождая её в процессах дыхания и брожения. Энергия получаемая человечеством при сжигании ископаемого топлива (уголь, нефть, природный газ, торф) также является запасённой в процессе фотосинтеза.
Фотосинтез является главным входом неорганического углерода в биологический цикл. Весь кислород атмосферы биогенного происхождения и является его побочным продуктом. Формирование окислительной атмосферы полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни выйти на сушу.
Световая фаза фотосинтеза
В световой фазе фотосинтеза происходит синтез АТФ и НАДФ·H2 за счет лучистой энергии. Это происходит на тилакоидах хлоропластов, где пигменты и ферменты образуют сложные комплексы для функционирования электрохимических цепей, по которым передаются электроны и отчасти протоны водорода.
Электроны в конечном итоге оказываются у кофермента НАДФ, который, заряжаясь отрицательно, притягивает к себе часть протонов и превращается в НАДФ·H2. Также накопление протонов по одну сторону тилакоидной мембраны и электронов по другую создает электрохимический градиент, потенциал которого используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфорной кислоты.
Главными пигментами фотосинтеза являются различные хлорофиллы. Их молекулы улавливают излучение определенных, отчасти разных спектров света. При этом некоторые электроны молекул хлорофилла переходят на более высокий энергетический уровень. Это неустойчивое состояние, и по-идее электроны путем того же излучения должны отдать в пространство полученную из вне энергию и вернуться на прежний уровень. Однако в фотосинтезирующих клетках возбужденные электроны захватываются акцепторами и с постепенным уменьшением своей энергии передаются по цепи переносчиков.
На мембранах тилакоидов существуют два типа фотосистем, испускающих электроны при действия света. Фотосистемы представляют собой сложный комплекс большей частью хлорофильных пигментов с реакционным центром, от которого и отрываются электроны. В фотосистеме солнечный свет ловит множество молекул, но вся энергия собирается в реакционном центре.
Электроны фотосистемы I, пройдя по цепи переносчиков, восстанавливают НАДФ.
Энергия электронов, оторвавшихся от фотосистемы II, используется для синтеза АТФ. А сами электроны фотосистемы II заполняют электронные дырки фотосистемы I.
Дырки второй фотосистемы заполняются электронами, образующимися в результате фотолиза воды. Фотолиз также происходит при участии света и заключается в разложении H2O на протоны, электроны и кислород. Именно в результате фотолиза воды образуется свободный кислород. Протоны участвуют в создании электрохимического градиента и восстановлении НАДФ. Электроны получает хлорофилл фотосистемы II.
Примерное суммарное уравнение световой фазы фотосинтеза:
H2O + НАДФ + 2АДФ + 2Ф → ½O2 + НАДФ · H2 + 2АТФ
Циклический транспорт электронов
Выше описана так называемый нецикличная световая фаза фотосинтеза. Есть еще циклический транспорт электронов, когда восстановления НАДФ не происходит. При этом электроны от фотосистемы I уходят на цепь переносчиков, где идет синтез АТФ. То есть эта электрон-транспортная цепь получает электроны из фотосистемы I, а не II. Первая фотосистема как бы реализует цикл: в нее возвращаются ей же испускаемые электроны. По дороге они тратят часть своей энергии на синтез АТФ.
Фотофосфорилирование и окислительное фосфорилирование
Световую фазу фотосинтеза можно сравнить с этапом клеточного дыхания — окислительным фосфорилированием, которое протекает на кристах митохондрий. Там тоже происходит синтез АТФ за счет передачи электронов и протонов по цепи переносчиков. Однако в случае фотосинтеза энергия запасается в АТФ не для нужд клетки, а в основном для потребностей темновой фазы фотосинтеза. И если при дыхании первоначальным источником энергии служат органические вещества, то при фотосинтезе – солнечный свет. Синтез АТФ при фотосинтезе называется фотофосфорилированием, а не окислительным фосфорилированием.
Описание клеточных элементов
Какие компоненты клеток именуются пластидами. Это структурные органоиды клетки, имеющие сложное строение и функции, важные для жизни растительных организмов.
Важно! Пластиды образуются из пропластид, которые находятся внутри клеток меристем или образовательной ткани и имеют гораздо меньший размер, чем зрелый органоид. А еще они делятся, подобно бактериям, на две половины перетяжкой.
пластидыстроение
Однако, ученым удалось выяснить, что этот органоид имеет две мембраны, внутри заполнен стромой, аналогичной цитоплазме жидкостью.
Складки внутренней мембраны, уложенные стопочками, образуют граны, которые могут соединяться между собой.
Также внутри присутствуют рибосомы, липидные капли, зерна крахмала. Еще у пластид, особенно у хлоропластов, имеются свои молекулы ДНК.
Симбиотическая теория
Чтобы выяснить механизм появления пластид, митохондрий и других органоидов, рассматривается теория эндосимбиоза. Ее суть заключается в совместной и взаимовыгодной жизни органеллы с клеткой. Впервые теорию предложил Шимпер в 1883 году. В 1867 ученые работали над двойственной природой лишайников.
Биолог Фамицын, учитывая теорию Шимпера, предположил, что хлоропласты, как лишайники и водоросли, относятся к симбионтам. Ученые доказали, что митохондрии — аэробные бактерии, которые не размножаются за пределами клеток. Общие свойства, характерные для митохондрий и пластид:
- наличие двух замкнутых мембран;
- размножение бинарным делением;
- ДНК не связана с гистонами;
- наличие своего аппарата синтеза белка.
В ДНК пластид и митохондрий, в отличие от аналогичных структур прокариот, нет интронов. А в ДНК хлоропластов закодирована информация о некоторых белках, остальные данные находятся в ядре клетки. В результате эволюции часть генетического материала из генома перешло в ядро, поэтому хлоропласты и митохондрии не размножаются независимо.
Археи и бактерии не склонны к фагоцитозу. Они питаются только осмотрофно. Множественные биологические и химические исследования указывают на химерную сущность бактерий. Ученые не выяснили, как сливаются организмы из нескольких доменов. В условиях современности выявлены организмы, которые содержат в себе другие клетки в качестве эндосимбионтов. Они отличаются от первичных эукариотов тем, что не интегрируются в одно целое, не имеют своей индивидуальности.
Интересным организмом считается Mixotricha paradoxa. Чтобы двигаться, она использует 250 000 бактерий, которые фиксируются на ее поверхности. Митохондрии у этого организма вторично потеряны. Внутри находятся сферические аэробные микроорганизмы, которые заменяют органеллы.
https://youtube.com/watch?v=FcW1aWYwhXc
Назначение хромопластов
Разноцветные хромопласты находятся в клетках многих лепестков, спелых плодов, фруктов и корнеплодов. Окраска этих органов обусловлена наличием в пластидах желтых и оранжевых пигментов.
Их также можно встретить в хлоропластах, но там они перекрываются хлорофиллом. Форма разноцветных органоидов непостоянна и зависит от состояния пигментов. В зависимости от строения каротиноидов существует три вида хромопластов:
- Пластиды, у которых каротиноиды обладают формой кристаллов.
- Органоиды с растворенными в липоидных глобулах пигментами.
- Органеллы, где каротиноиды находятся в мелких пучках нитей и связаны с фибриллами белка.
Хромопласты обычно образуются из старых хлоропластов, за исключением моркови, где они развиваются из пропластид. Поэтому часть его плода, подпадающая под солнечные лучи, начинает зеленеть. Органоиды в моркови образовываются из крахмалоносных лейкопластов, а затем появляются каротиноиды, которые постепенно кристаллизуются.
Роль хромопластов в обмене веществ еще мало изучена. Они не обладают способностью к фотосинтезу, так как в них нет хролофилла. Побочное значение этого органоида состоит в том, что они обеспечивают окраску цветов и плодов, которые привлекают разных насекомых для опыления.
Строение клетки растения
В природе существуют как одноклеточные растения, так и многоклеточные. Например, в водной среде можно встретить одноклеточные водоросли, клетки которых имеют все функции, присущие живому организму.
Многоклеточная особь – это не просто набор клеток, а единый организм, состоящий из различных тканей и органов, которые взаимодействуют между собой.
Строение растительной клетки у всех растений схоже, их клетки состоят из одних и тех же компонентов. Рассмотрим состав растительной клетки:
- оболочка (включает в себя цитоплазматическую мембрану и клеточную стенку из целлюлозы);
- цитоплазма, с расположенными в ней митохондриями, хлоропластами, вакуолями и другими органоидами;
- ядро, состоящие из ядерной оболочки, ядерного сока, ядрышка, хроматина.
Рис. 1. Строение клетки растения.
В отличие от животной растительная клетка имеет особую целлюлозную оболочку, вакуоли с клеточным соком и пластиды.
Изучение строения и функций растительной клетки показало, что:
ТОП-4 статьи
которые читают вместе с этой
- самой значительной частью в организме является ядро, которое отвечает за все происходящие процессы. Оно содержит наследственную информацию, которая передаётся из поколения в поколение. От цитоплазмы отделяет ядро ядерная оболочка;
- бесцветное вязкое вещество, которое наполняет клетку, называется цитоплазмой. Именно в ней находятся все органоиды;
- под клеточной стенкой находится мембрана (тонопласт), которая отвечает за обмен веществ с окружающей средой. Это тоненькая плёнка, отделяющая оболочку от цитоплазмы;
- клеточная стенка достаточно прочная, так как в её состав входит целлюлоза. Поэтому функциями стенки является защита и поддержание формы;
-
важными составными компонентами являются пластиды.
Они могут быть цветными или бесцветными. Так, например, хлоропласты имеют зелёный цвет, именно в них происходит процесс фотосинтеза;
- внутренняя полость, заполненная соком, называется вакуолью. Размер её зависит от возраста организма: чем он старше, тем больше вакуоль. В состав сока входит водный раствор минеральных солей и органических веществ. Он содержит различные сахара, ферменты, минеральные кислоты и соли, белки и пигменты;
Рис. 2. Изменения размера вакуоли при росте растения.
- митохондрии способны передвигаться вместе с цитоплазмой, как и пластиды. Именно здесь происходит процесс дыхания и образования АТФ;
- аппарат Гольджи может иметь различные формы (диски, палочки, зёрнышки). Его роль – накопление и выведение различных веществ;
- рибосомы синтезируют белок. Находятся они в цитоплазме, внутри митохондрий и пластид.
Клеточное строение растений учёные открыли ещё в XVII веке. Клетки апельсиновой мякоти видны невооружённым глазом, но большинство клеток растений можно рассмотреть лишь под микроскопом.
Рис. 3. Строение аппарата Гольджи.
Виды пластид, какого цвета могут быть
Бесцветные пластиды, лейкопласты
Лейкопласты — это органоиды, которые содержатся в спрятанных от света частях растений, то есть в корнях, клубнях, плодах, семенах.
Лейкопласты являются преимущественно бесцветными, то есть не имеют пигмента. Отличаются шаровидной формой, и основная их функция — это накопление питательных веществ. Это накопление происходит за счет синтеза более сложных соединений.
По признаку накапливаемого вещества лейкопласты могут подразделяться на следующие разновидности:
- амилопласты — содержат крахмал
- липидопласты — накапливают жиры;
- протеинопласты — откладывают белки;
- олеопласты — в состав входят масла.
При определенных условиях могут быть преобразованы в хролопласты и хромопласты.
Хлоропласты (зеленого цвета)
Хлоропласты — это двухмембранные органоиды, основной функцией которых является фотосинтез.
Хлоропласты окрашены в зеленый цвет за счет особого пигмента — хлорофилла. Имеют овальную форму, однако могут быть также спиралевидными, лопастными или эллипсоидными. Основной функцией является осуществление фотосинтеза. Возможен переход в хромопласты.
Деление хлоропластов более активно, чем у других пластид.
Хромопласты (желтого, красного и других цветов)
Хромопласты — это органеллы, у которых отсутствует внутримембранная система.
Хромопласты могут быть желтого, красного и оранжевого цвета. Этого они добиваются за счет пигмента — каротиноидов, которые можно встретить также и в хлоропластах, но там они не играют особой роли из-за присутствия хлорофилла.
Каротиноиды определяют форму этой разновидности пластид:
- трубчатая;
- кубическая;
- кристаллообразная.
Функция хромопластов сегодня не ясна до конца. Биологи склоняются к тому, что благодаря пигменту хромопласты придают цветку или плоду яркий цвет, который привлекает насекомых и птиц, необходимых для размножения.